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Introduction

Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of
500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
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Measurable linear transformations

Hilbert spaces

H : real separable Hilbert space with norm ||.|| and scalar product (., .)
% space of continuous linear operators from H to H with its usual norm

-l
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Measurable linear transformations
Hilbert spaces

H : real separable Hilbert space with norm ||.|| and scalar product (., .)
% space of continuous linear operators from H to H with its usual norm

-l

L2, =12,(Q, o/, P) : Hilbert space of (classes of) random variables defined
on the probability space (2, .o, P) and with values in (H, Ay), scalar
product

(X, Y]=E(X,Y); X,Y €13,

In the following all the random variables are supposed to be centered.
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Measurable linear transformations
Linearly closed subspaces

A linear subspace & of L2, is said to be linearly closed (LCS) if ¢ is
closed in L%, and X € 4,/ € £ implies I(X) €Y.

X and Y in L2, are said to be weakly orthogonal (X_LY) if E(X,Y)=0
and strongly orthogonal if Cx y =0 where

Cxy(x)=E((X,x)Y), xecH

is the cross-covariance operator of X and Y.
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Measurable linear transformations
Linearly closed subspaces

A linear subspace & of L2, is said to be linearly closed (LCS) if ¢ is
closed in L%, and X € 4,/ € £ implies I(X) €Y.

X and Y in L2, are said to be weakly orthogonal (X_LY) if E(X,Y)=0
and strongly orthogonal if Cx y =0 where

CX.,Y(X) = E(<Xa X> Y)u x€H
is the cross-covariance operator of X and Y.

Y weakly orthogonal to & implies Y strongly orthogonal to ¢.
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Measurable linear transformations
Measurable linear transformation

Let 1 be a Probability on (H, #y). An application A is said to be a
1—measurable linear tranformation (u—MLT) if A is measurable and
linear on a linear space S such that u(S)=1.
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Measurable linear transformations
Measurable linear transformation

Let 1 be a Probability on (H, #y). An application A is said to be a
1—measurable linear tranformation (u—MLT) if A is measurable and
linear on a linear space S such that u(S)=1.

It is equivalent to say that there exists a sequence (/x, k > 1) in £ such
that

Ik(x) — A(x), x € S.
k—yo0

(cf Mandelbaum (1984)).
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Measurable linear transformations
Measurable linear transformation

Let 1 be a Probability on (H, #y). An application A is said to be a
1—measurable linear tranformation (u—MLT) if A is measurable and
linear on a linear space S such that u(S)=1.

It is equivalent to say that there exists a sequence (/x, k > 1) in £ such
that

Ik(x) — A(x), x € S.
k—yo0

(cf Mandelbaum (1984)).
A is, in general, NOT continuous, example:

A(x)=x

In the following A always denotes a MLT.
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Measurable linear transformations
The gaussian case

In the gaussian case one has a more precise property:

Lemma

Let X be a H—valued gaussian random variable and let 4x be the LCS
generated by X. If A is Px — MLT there exists (Ix,k > 1) in £ such that

ElIk(X) = A(X)|* —0,

k—so0

it follows that A(X) € ¥x.
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Measurable linear transformations
An example

H = L2(R), (hj,j > 0) the orthonormal basis of Hermite functions, set

X=) &h
=0
where the &'s are real independent and such that
P =-a)=P(=a)=p;, j=1

with p; < %, ij <oand a; >0, ijaf < oo,
J j
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Measurable linear transformations
An example

H = L2(R), (hj,j > 0) the orthonormal basis of Hermite functions, set

X=) &h
j=0
where the &'s are real independent and such that
P =-a)=P(=a)=p;, j=1
with p; < 1, ij <ooand a; >0, ija <oo. Then P(X €5) =1

where S is the linear space of polynomlals with weight exp(— ) teR
and if A(x) = and f(x)(t) = 0 e R, k> 1,
then

2kl (x) = 1) —= [|A2(3)]| x € 5.
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Measurable linear transformations
Projection on a LCS

The link between MLT and LCS appears in the following statement
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Measurable linear transformations
Projection on a LCS

The link between MLT and LCS appears in the following statement

Proposition

Let 9x be the LCS generated by X and MX its orthogonal projector in L%_,.
Then, for each Y in L%_,, there exists a Px—MLT Ag such that

MX(Y) = 24(X).
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Measurable linear transformations

Continuity

The next proposition underscores a special case where Ag is continuous:
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Measurable linear transformations
Continuity

The next proposition underscores a special case where Ag is continuous:

Proposition

The following statements are equivalent

a) There exists a > 0 such that || Cx,y(x)|| < a||Cx(x)||, x € H,
b) There exists Iy € £ such that Cxy = lhCx ,

c) NX(Y) = h(X).
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Innovation of ARMAH processes

Innovation

A H— white noise is a sequence (&,, n € Z) of strongly orthogonal
H—valued random variables such that E ||&,||* = 62 > 0 and
Ee,=0,neZ.
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Innovation of ARMAH processes
Innovation

A H— white noise is a sequence (&,, n € Z) of strongly orthogonal
H—valued random variables such that E ||&,||* = 62 > 0 and
Ee,=0,neZ.

A weakly stationary process in H satisfies

Cth,Xerh = CXme? n,m,h €.
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Innovation of ARMAH processes
Innovation

A H— white noise is a sequence (&,, n € Z) of strongly orthogonal
H—valued random variables such that E ||&,||* = 62 > 0 and
Ee,=0,neZ.

A weakly stationary process in H satisfies

Cth,Xerh = CXme? n,m,h €.

(€, n € Z) is the innovation of (X,, n € Z) if

X;’;_Q_]_ = Xn+8n+17 ne Z)

where X ; is the best linear predictor of X1 given X, X;_1,...
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Innovation of ARMAH processes

ARH(1)

Set .#, be the LCS generated by X, X;,—1,... . A stationary process is an
autoregressive process of order 1 in H (ARH(1)) if

M-70-1(X,) = N%n-1(X,,)
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Innovation of ARMAH processes

ARH(1)

Set .#, be the LCS generated by X, X;,—1,... . A stationary process is an
autoregressive process of order 1 in H (ARH(1)) if

M-70-1(X,) = N%n-1(X,,)

Hence

Xn=An(Xn-1)+€n, nE€Z,

where A, is MLT and (g&,) is the innovation.
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Innovation of ARMAH processes

Innovation of an ARH(1)

Proposition

Suppose that the equation
Xn=A(Xn-1)+€n, n€EZ (1)

has a solution such that A : S+—— S is Px, — MLT for all n,
lj(Xn_j) S gxnfj and lj(&'n_j) S ggnij,jz 1,
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Innovation of ARMAH processes

Innovation of an ARH(1)

Proposition
Suppose that the equation

Xn=A(Xn-1)+€n, nEZ (1)
has a solution such that A : S+—— S is Px, — MLT for all n,

lj(Xn_j) S gxnfj and lj(&'n_j) & ggnij,jz 1, then if

1 & ; 2
;J;E 1% (X )" === 0, nez
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Innovation of ARMAH processes

Innovation of an ARH(1)

Proposition
Suppose that the equation

n—l( nl)‘f"gnynEZ (1)

has a solution such that A : S+—— S is Px, — MLT for all n,
lj(Xn_j) S gxnfj and lj(&'n_j) & ggnij,jz 1, then if

—ZEH/IJ )P ——0,nez
k—o0
(1) has a unique stationary solution given by

,,_IlmL)Z Alen,)nez

and (&,) is the innovation of (X,
D.Bosq (LSTA, Paris 6) Functional linear filters 13 / 42




Innovation of ARMAH processes
Proof

The proof is based on the relation

k—1 _/ . 1 k .
Xo=Y (1= D)2 (en )+ 1 Y M (Xo)).
J=0 k kj:l
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Innovation of ARMAH processes
Proof

The proof is based on the relation

k—1

: k
Xn = Z(l—*)l €n—j) Z, Xn—j)-

j=0
The above condition is strictly weaker than the classical conditions like:

“A is continuous and there exists an integer jo such that
|A/]|, <1,/ >jo." (cf Bosqg-Blanke 2007)
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Innovation of ARMAH processes

Innovation of a MAH(1)

Proposition
Suppose that (X,) is defined by

Xn=€n—A(€n-1), NEZ.
where A : Hy — Hy is P, — MLT for all n, with

M(Xn_j) € 9x, ;s A (€n—j) € Ye,;»J > 1, n € L, then, if
1 & i 2
2L el o
J:

(&n) is the innovation of (X,) and

8,,—||m L2 )Z(l—— )
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Innovation of ARMAH processes
“Roots of modulus 1"

The condition is weak. In particular if A is continuous and such that

A7), <1, j>1

I
the above Proposition holds. A simple example is

Xo=6€,—N(&,.1),n€Z

where G is a closed subspace of H and M€ its orthogonal projector.
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Innovation of ARMAH processes
“Roots of modulus 1"

The condition is weak. In particular if A is continuous and such that

A7), <1, j>1

I

the above Proposition holds. A simple example is
Xo=6€,—N(&,.1),n€Z

where G is a closed subspace of H and M€ its orthogonal projector.

If the MA is real, it corresponds to roots of modulus 1.
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Innovation of ARMAH processes
Example

In L2]0, 1] consider the white noise

en(t) =Y, 5,,,/_—|, tc[0,1], neZ
i=0 :

where (&,,;) is a sequence of real independent random variables such that,

for all n, &pi ~.A47(0, 67) where 0 < )" 07 < co.
i=1
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Innovation of ARMAH processes
Example

In L2]0, 1] consider the white noise
en(t) :,;)én,'ﬂ, te[0,1], neZ

where (&,,;) is a sequence of real independent random variables such that,

for all n, &, ~ .#(0, 6?) where 0 < ZG,? < oo, Set
i=1

Xa(t) = n(t) = £51(1)

then (&) is the innovation.
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Innovation of ARMAH processes
The mixed case

Consider the ARMAH (1,1) process defined as

En— /(8,,71) — Xn _p(anl)a nez

where (&,) is a H—white noise and | and p belong to .Z; suppose that

7 Z P15 = 0 and that ¢ Z Il

then, if that equation has a stationary so/ut/on, it is given by

Xo = lim ( 20 Z 1—— )P/ (€n—j — I(€n—j-1), nEZ

and (&,) is the innovation of (Xp,).
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Innovation of ARMAH processes
Compound Ornstein-Uhlenbeck process

Example

Consider the Hilbert space H = L2([0, 1], %o 1), i) where p is the sum of
Lebesgue measure and Dirac measure at the point 1. Set

en(t) = /nnHexp(—G(n—i—t—s)) dW(s), t€[0,1], ne Z, (6 >0),

where W is a bilateral standard Wiener process. Put /(x)(t) = x(t), and
p(x)(t) =exp(—0t).x(1)t €[0,1], x € H.
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Innovation of ARMAH processes
Compound Ornstein-Uhlenbeck process

Consider the Hilbert space H = L2([0, 1], %o 1), i) where p is the sum of
Lebesgue measure and Dirac measure at the point 1. Set

en(t) = /nnHexp(—G(n—i—t—s)) dW(s), t€[0,1], ne Z, (6 >0),

where W is a bilateral standard Wiener process. Put /(x)(t) = x(t), and
p(x)(t) =exp(—0t).x(1) t € [0, 1], x € H. Then the process

n+t
Xo(£) = exp(~(8(n+1)) | exp(65)dW(s)
—exp(—0(n—1+ t))/n_HteXp(Os) dW(s), t€[0,1], neZ

—oo

is a stationary ARMAH (1,1).
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Innovation of ARMAH processes
Kalman-Bucy filter in H

Example

Consider the model
Xo=r(Yn)+€nn>1

Yn :p(Yn—l)‘i‘nna n>1

where (X,) and (Y,) are H—valued stationary processes and where (&)
and (M) are two strongly orthogonal white noises such that

Ce,.v, = Cy,.v,. =0; p and r belong to .Z. Then, if rp = pr, (Xj,) is an
ARMAH (1,1).
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Innovation of ARMAH processes
Kalman-Bucy filter in H

Example

Consider the model
Xo=r(Yn)+€nn>1

Yn :p(Yn—l)‘i‘nna n>1

where (X,) and (Y,) are H—valued stationary processes and where (&)
and (M) are two strongly orthogonal white noises such that

Ce,.v, = Cy,.v,. =0; p and r belong to .Z. Then, if rp = pr, (Xj,) is an
ARMAH (1,1).

v

Other examples of Kalman-Bucy filter in H appear in Ruiz-Medina et al in
a spatial framework.
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Innovation of ARMAH processes

MAH(2)

Consider a MAH(2) admitting the decomposition

Xn=¢€r—(00+B)(€n-1)+Bo(en—2), nEZ

where (&,) is a white noise and a,3 € £ and suppose that

Ll o
2 = fk_m,

and

1 & j 2
ELIPE o

then (&,) is the innovation of (X,).
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Inverse problems
Constructing the innovation

What about the case where the noise associated with the process is NOT
the innovation?
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Inverse problems

The case of a MAH(1)

Proposition
Consider the MAH(1) given by

Xn=en—I(en-1),n€Z

where | € £ and (e,) is a H— white noise. We suppose that | is
symmetric, invertible, such that ‘}(1*1)1'0}| o< 1 for some jo > 1. Moreover
I and Ce, commute.

Then, the innovation of (X,) is defined as €, = (I —1"B)"1(I —IB)e,
where B is the backward operator (B(x,) = x,—1), convergence takes place
in L2, and

Xn=€n— 171 (€n 1), nEZ.

In addition one has

CEO = I2 CeO'
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Inverse problems
An example

Example

Suppose that
= Z aj Vi Q v;
i=1
where (v;) is an orthonormal system in H and 1 < |a;| < |az| < ... < a < oo
and that

Coo =) CiVi®V;
i=1

then the above Proposition holds.
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Inverse problems

The case of an ARH(1)

Consider the equation X, = r(X,_1)+ M, n€Z
where (1) is a H—white noise and r € £, and suppose that

R G S
e X, —o,
J=1

then it has a stationary solution given by

k
. j—1.
Xn:_ww(ﬁ,) Y (1==7)r7(Mns)), n€Z.

Jj=1

If, in addition, r~1Cx, is symmetric and Cx,(Is—(r*)=2) #0, then the
innovation of (X,) is

€n=X,—r *(X,_1) n€Z
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Inverse problems
Starting from the best predictor

Principle: Given the best linear predictor (BLP) find the associated model.
Choice: Extended exponential smoothing in H :

j=0
where o and fB belong to .Z and a8 = Ba. Then one has

nt1 = &(Xn) +B(X5).
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Inverse problems
Associated model

Proposition

Suppose that Hﬁjoﬂg <1 and H(Oﬂ—l—ﬁ)jng < 1 for some integer jo, and
that o # 0. If (X,) is a regular zero-mean stationary process with
innovation (&,) and such that the BLP is

:-1-1 = (/Z Bj(Xn—j)>
=0
where aff = Ba, then (X,) is an ARMAH (1,1):

Xn— (0 +B)(Xn-1) = € — B(€n-1), (2)
Conversely, if (X,) satisfies 2, then X}, | is BLP for every n.
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Computing linear filters in Hilbert spaces

(X,Y) in G x H real separable Hilbert spaces with spectral
decompositions:

Cx =Y oivi®v (0>0,Y a; <o)
iel i€l
and
Cy=Y Bwow (B>0,) B <)
jed jed

I and J are finite or infinite.
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Computing linear filters in Hilbert spaces

(X,Y) in G x H real separable Hilbert spaces with spectral
decompositions:

Cx :ZOC,'V;@V,' (o > O,Zai < )
iel iel
and
Cy =Y. Biwj@w (Bj>0,) B <e)
jed jed
I and J are finite or infinite. Let Z(G, H) be the space of continuous
linear operators from G to H. Set

Fx =sp{l(X), € Z(G,H)}

where the closure is taken in L2, = L%,(Q, </, P).
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Computing linear filters in Hilbert spaces

Let Z(G, H) be the space of continuous linear operators from G to H. Set

Fx =sp{l(X), € Z(G,H)}

where the closure is taken in L2, = L%,(Q, </, P).
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Computing linear filters in Hilbert spaces

Let Z(G, H) be the space of continuous linear operators from G to H. Set
Fx = sp{I(X), | € Z(G,H)}

where the closure is taken in L2, = L%,(Q, </, P).

The best linear predictor of Y given X is the orthogonal projection of Y
on gzx.
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Computing linear filters in Hilbert spaces

The best linear predictor

Proposition
The best linear predictor (BLP) of Y given X is

o(X)=Y 7ij(view)(X) (L)

ieljed
where
E((X, vi) (Y, wi)y)

= ,iel,jed
i E(X,v)% /
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Computing linear filters in Hilbert spaces

Proof

The proof uses the fact that

U.: = (X’ Vi)G
ij = \/a,

is an orthonormal system in L%_,.

wiiel,jed,
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Computing linear filters in Hilbert spaces
Continuity

Ao is a Px—MLT. Continuity of Ag appears in the next statement

Proposition

If there exists Iy € £(G, H) such that

Cx,y = b Cx,
then the best linear predictor takes the form

X, vidg V_i>G Cx,v(vi)

b(X)=Y,

iel Uy
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Computing linear filters in Hilbert spaces
Converse

If there exists Iy : G — H such that

lo(X) = il% CX,Y(Vi)a x€H, (H)

then Iy € g(G,H) and Cx7y = Iy Cx.
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Computing linear filters in Hilbert spaces

The gaussian case

In the gaussian case a similar result can be obtained without continuity
assumption:
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Computing linear filters in Hilbert spaces
The gaussian case

In the gaussian case a similar result can be obtained without continuity
assumption:

Proposition

If G = H and the vector (X,Y') is gaussian then the conditional
expectation E(Y |X) and the BLP coincide and have the form

Xivide G vl7)

E(YIX)=2(X)=)

i€l 0
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Computing linear filters in Hilbert spaces
Proof

The proof uses the fact that the sequence

EQY s 91X v2) s (X, Vi ) = il E( <>;(Z;><G <.>v27)y>H>
1= y Vil

<X7 Vi>G7

m > 1, is a martingale in L%.
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Computing linear filters in Hilbert spaces

Basis of a LCS

The final statement is useful for computing a BLP

D.Bosq (LSTA, Paris 6) Functional linear filters



Computing linear filters in Hilbert spaces
Basis of a LCS

The final statement is useful for computing a BLP

Proposition
The LCS ¥x of LzG has the orthonormal basis

X, v : . X, vi ; z f

i i

where
Cx 222:(1;V7§§V7((m >-0,2:(Xi<:°°)
icl iel
and (uj, j € Jl) is an orthonormal basis of the orthogonal complement of
the closed subspace of G generated by (vj, i € I).

(cf Bosg-Mourid (2012)).
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Computing linear filters in Hilbert spaces
Applications: model with noise

Consider the model

X=r(Y)+e
with r € Z(H, G) and Cy ¢ =0, where only X is observed, Then

Cx7y = Cyr*

hence

1000 =X 2t () (X, v
ij !
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Computing linear filters in Hilbert spaces
Bayesian estimator

Modification of notation: (X, ©) gaussian in G x H, 7 prior distribution
for ©, then the Bayesian estimator of 0 is

E({X, vi) (©, wj)yy)
E((X, vi)e)

E(©[X)=),

iJ

<X7 VI'>GWf

D.Bosq (LSTA, Paris 6) Functional linear filters



Computing linear filters in Hilbert spaces
Bayesian estimator

Modification of notation: (X, ©) gaussian in G x H, 7 prior distribution
for ©, then the Bayesian estimator of 0 is

E({X, vi) (©, wj)yy)
E((X, vi)e)

E(©[X)=),

iJ

<X7 VI'>GWf

@ Existence of density not required,
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Computing linear filters in Hilbert spaces
Bayesian estimator

Modification of notation: (X, ©) gaussian in G x H, 7 prior distribution
for ©, then the Bayesian estimator of 0 is

E({X, vi) (©, wj)yy)
E((X, vi)e)

E(©[X)=),

iJ

<X7 VI'>GWf

@ Existence of density not required,

@ G (resp. H) may be finite or infinite dimensional.
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Computing linear filters in Hilbert spaces
Tensorial product

Assume that (X, Y) is gaussian and such that

E(Y|X)=h(X)
where [y € Z(G,H). Thus

Y =h(X)+n

where 1 is strongly orthogonal to X. Then the tensorial product Y ® Y
has conditional expectation

E(Y®Y|X)=(X)®hb(X)+ G,
with

Xovi)e e (v,

bh(X)=Y, :

iel !
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Statistics...

Consider a sample (Xj, Y;j), 1 <i < n and suppose that X, is observed.
In order to “estimate” Ag(Xn+1) the following steps are necessary
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Statistics...

Consider a sample (Xj, Y;j), 1 <i < n and suppose that X, is observed.
In order to “estimate” Ag(Xn+1) the following steps are necessary

@ Compute the empirical eigenvectors and eigenvalues from
n
Cox ==Y Xi®X;
n =
i=1
and

Coy =Y YiY,
i=1
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Statistics...

Consider a sample (Xj, Y;j), 1 <i < n and suppose that X, is observed.
In order to “estimate” Ag(Xn+1) the following steps are necessary

@ Compute the empirical eigenvectors and eigenvalues from
n
Cox ==Y Xi®X;
iz
and .
Coy ==Y Yi®Y;
ni=

@ Choose a double truncation index
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Consider a sample (Xj, Y;j), 1 <i < n and suppose that X, is observed.
In order to “estimate” Ag(Xn+1) the following steps are necessary

@ Compute the empirical eigenvectors and eigenvalues from
n
Cox = - Y Xi® X
i=1

and

Coy =Y YiY,
i=1

@ Choose a double truncation index

o Find a doctoral student for the calculations.
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