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Introduction

Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of
500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
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Measurable linear transformations

Hilbert spaces

H : real separable Hilbert space with norm ‖.‖ and scalar product 〈., .〉
L : space of continuous linear operators from H to H with its usual norm
‖.‖L
L2
H = L2

H (Ω, A , P) : Hilbert space of (classes of) random variables defined
on the probability space (Ω, A , P) and with values in (H, BH), scalar
product

[X ,Y ] = E 〈X ,Y 〉 ; X ,Y ∈ L2
H .

In the following all the random variables are supposed to be centered.
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Measurable linear transformations

Linearly closed subspaces

A linear subspace G of L2
H is said to be linearly closed (LCS) if G is

closed in L2
H and X ∈ G , l ∈L implies l(X ) ∈ G .

X and Y in L2
H are said to be weakly orthogonal (X⊥Y ) if E 〈X ,Y 〉= 0

and strongly orthogonal if CX ,Y = 0 where

CX ,Y (x) = E (〈X , x〉 Y ), x ∈ H

is the cross-covariance operator of X and Y .

Y weakly orthogonal to G implies Y strongly orthogonal to G .
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Measurable linear transformations

Measurable linear transformation

Let µ be a Probability on (H, BH). An application λ is said to be a
µ−measurable linear tranformation (µ−MLT) if λ is measurable and
linear on a linear space S such that µ(S) = 1.
It is equivalent to say that there exists a sequence (lk , k ≥ 1) in L such
that

lk(x)−−−→
k→∞

λ (x), x ∈ S .

(cf Mandelbaum (1984)).
λ is, in general, NOT continuous, example:

λ (x) = x ′

In the following λ always denotes a MLT.
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Measurable linear transformations

The gaussian case

In the gaussian case one has a more precise property:

Lemma

Let X be a H−valued gaussian random variable and let GX be the LCS
generated by X . If λ is PX −MLT there exists (lk ,k ≥ 1) in L such that

E ‖lk(X )−λ (X )‖2 −−−→
k→∞

0,

it follows that λ (X ) ∈ GX .
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Measurable linear transformations

An example

H = L2(R), (hj , j ≥ 0) the orthonormal basis of Hermite functions, set

X =
∞

∑
j=0

ξj hj

where the ξ ′j s are real independent and such that

P(ξj =−aj) = P(ξj = aj) = pj , j ≥ 1

with pj <
1
2 , ∑

j

pj < ∞ and aj > 0, ∑
j

pja
2
j < ∞. Then P(X ∈ S) = 1

where S is the linear space of polynomials with weight exp(− t2

2 ), t ∈ R
and if λ (x) = x ′ and lk(x)(t) = x(t+1/k)−x(t)

1/k , t ∈ R, k ≥ 1,
then

2k ‖lk(x)−λ (x)‖ −−−→
k→∞

∥∥λ
2(x)

∥∥ , x ∈ S .
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Measurable linear transformations

Projection on a LCS

The link between MLT and LCS appears in the following statement

Proposition

Let GX be the LCS generated by X and ΠX its orthogonal projector in L2
H .

Then, for each Y in L2
H , there exists a PX−MLT λ0 such that

ΠX (Y ) = λ0(X ).
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Measurable linear transformations

Continuity

The next proposition underscores a special case where λ0 is continuous:

Proposition

The following statements are equivalent
a) There exists α ≥ 0 such that

∥∥CX ,Y (x)
∥∥ ≤ α ‖CX (x)‖ , x ∈ H,

b) There exists l0 ∈L such that CX ,Y = l0CX ,
c) ΠX (Y ) = l0(X ).
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Innovation of ARMAH processes

Innovation

A H− white noise is a sequence (εn, n ∈ Z) of strongly orthogonal
H−valued random variables such that E ‖εn‖2 = σ2 > 0 and
Eεn = 0, n ∈ Z.
A weakly stationary process in H satisfies

CXn+h,Xm+h
= CXn,Xm , n,m,h ∈ Z.

(εn, n ∈ Z) is the innovation of (Xn, n ∈ Z) if

X ∗n+1 = Xn + εn+1, n ∈ Z,

where X ∗n+1 is the best linear predictor of Xn+1 given Xn, Xn−1, . . .

D.Bosq (LSTA, Paris 6) Functional linear filters 11 / 42



Innovation of ARMAH processes

Innovation

A H− white noise is a sequence (εn, n ∈ Z) of strongly orthogonal
H−valued random variables such that E ‖εn‖2 = σ2 > 0 and
Eεn = 0, n ∈ Z.
A weakly stationary process in H satisfies

CXn+h,Xm+h
= CXn,Xm , n,m,h ∈ Z.

(εn, n ∈ Z) is the innovation of (Xn, n ∈ Z) if

X ∗n+1 = Xn + εn+1, n ∈ Z,

where X ∗n+1 is the best linear predictor of Xn+1 given Xn, Xn−1, . . .

D.Bosq (LSTA, Paris 6) Functional linear filters 11 / 42



Innovation of ARMAH processes

Innovation

A H− white noise is a sequence (εn, n ∈ Z) of strongly orthogonal
H−valued random variables such that E ‖εn‖2 = σ2 > 0 and
Eεn = 0, n ∈ Z.
A weakly stationary process in H satisfies

CXn+h,Xm+h
= CXn,Xm , n,m,h ∈ Z.

(εn, n ∈ Z) is the innovation of (Xn, n ∈ Z) if

X ∗n+1 = Xn + εn+1, n ∈ Z,

where X ∗n+1 is the best linear predictor of Xn+1 given Xn, Xn−1, . . .

D.Bosq (LSTA, Paris 6) Functional linear filters 11 / 42



Innovation of ARMAH processes

ARH(1)

Set Mn be the LCS generated by Xn, Xn−1, . . . . A stationary process is an
autoregressive process of order 1 in H (ARH(1)) if

ΠMn−1(Xn) = ΠGXn−1 (Xn)

Hence

Xn = λn(Xn−1) + εn, n ∈ Z,

where λn is MLT and (εn) is the innovation.
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Innovation of ARMAH processes

Innovation of an ARH(1)

Proposition

Suppose that the equation

Xn = λ (Xn−1) + εn, n ∈ Z (1)

has a solution such that λ : S 7−→ S is PXn −MLT for all n,
λ j(Xn−j) ∈ GXn−j and λ j(εn−j) ∈ Gεn−j , j≥ 1, then if

1

k

k

∑
j=1

E
∥∥λ

j(Xn−j)
∥∥2 −−−→

k→∞

0, n ∈ Z

(1) has a unique stationary solution given by

Xn = lim
k→∞

(L2
H)

k−1

∑
j=0

(1− j

k
)λ

j(εn−j), n ∈ Z

and (εn) is the innovation of (Xn).
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Innovation of ARMAH processes

Proof

The proof is based on the relation

Xn =
k−1

∑
j=0

(1− j

k
)λ

j(εn−j) +
1

k

k

∑
j=1

λ
j(Xn−j).

The above condition is strictly weaker than the classical conditions like:

“λ is continuous and there exists an integer j0 such that∥∥λ j
∥∥

L
< 1, j ≥ j0.” (cf Bosq-Blanke 2007)
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Innovation of ARMAH processes

Innovation of a MAH(1)

Proposition

Suppose that (Xn) is defined by

Xn = εn−λ (εn−1), n ∈ Z.

where λ : H1 7−→ H1 is Pεn −MLT for all n, with
λ j(Xn−j) ∈ GXn−j ,λ

j(εn−j) ∈ Gεn−j , j ≥ 1, n ∈ Z, then, if

1

k2

k

∑
j=1

E
∥∥λ

j(εn−j)
∥∥2 −−−→

k→∞

0,

(εn) is the innovation of (Xn) and

εn = lim
k→∞

(L2
H)

k−1

∑
j=0

(1− i

k
)λ

j(Xn−j).
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Innovation of ARMAH processes

“Roots of modulus 1”

The condition is weak. In particular if λ is continuous and such that∥∥λ
j
∥∥

L
≤ 1, j ≥ 1

the above Proposition holds. A simple example is

Xn = εn−ΠG (εn−1), n ∈ Z

where G is a closed subspace of H and ΠG its orthogonal projector.

If the MA is real, it corresponds to roots of modulus 1.
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Innovation of ARMAH processes

Example

Example

In L2 [0, 1] consider the white noise

εn(t) =
∞

∑
i=0

ξni
t i

i !
, t ∈ [0, 1] , n ∈ Z

where (ξni ) is a sequence of real independent random variables such that,

for all n, ξni ∼N (0, σ2
i ) where 0 <

∞

∑
i=1

σ2
i < ∞. Set

Xn(t) = εn(t)− ε
′
n−1(t)

then (εn) is the innovation.
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Innovation of ARMAH processes

The mixed case

Proposition

Consider the ARMAH (1,1) process defined as

εn− l(εn−1) = Xn−ρ(Xn−1), n ∈ Z

where (εn) is a H−white noise and l and ρ belong to L ; suppose that

1

k2

k

∑
j=0

∥∥l j∥∥2

L
−−−→
k→∞

0 and that
1

k

k

∑
j=0

∥∥ρ
j
∥∥2

L
−−−→
k→∞

0

then, if that equation has a stationary solution, it is given by

Xn = lim
k→∞

(L2
H)

k−1

∑
j=0

(1− j

k
) ρ

j(εn−j − l(εn−j−1), n ∈ Z

and (εn) is the innovation of (Xn).
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Innovation of ARMAH processes

Compound Ornstein-Uhlenbeck process

Example

Consider the Hilbert space H = L2([0, 1], B[0,1], µ) where µ is the sum of
Lebesgue measure and Dirac measure at the point 1. Set

εn(t) =
∫ n+t

n
exp(−θ(n+ t− s))dW (s), t ∈ [0, 1] , n ∈ Z, (θ > 0),

where W is a bilateral standard Wiener process. Put l(x)(t) = x(t), and
ρ(x)(t) = exp(−θ t).x(1) t ∈ [0, 1] , x ∈ H. Then the process

Xn(t) = exp(−(θ(n+ t))
∫ n+t

−∞

exp(θs)dW (s)

− exp(−θ(n−1 + t))
∫ n−1+t

−∞

exp(θs)dW (s), t ∈ [0, 1] , n ∈ Z

is a stationary ARMAH (1,1).
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Innovation of ARMAH processes

Kalman-Bucy filter in H

Example

Consider the model
Xn = r(Yn) + εn, n ≥ 1

Yn = ρ(Yn−1) + ηn, n ≥ 1

where (Xn) and (Yn) are H−valued stationary processes and where (εn)
and (ηn) are two strongly orthogonal white noises such that
Cεn,Yn = Cηn,Yn−1 = 0; ρ and r belong to L . Then, if rρ = ρr , (Xn) is an
ARMAH (1,1).

Other examples of Kalman-Bucy filter in H appear in Ruiz-Medina et al in
a spatial framework.
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Innovation of ARMAH processes

MAH(2)

Proposition

Consider a MAH(2) admitting the decomposition

Xn = εn− (α + β )(εn−1) + βα(εn−2), n ∈ Z

where (εn) is a white noise and α,β ∈L and suppose that

1

k2

k

∑
j=0

∥∥α
j
∥∥2

L
−−−→
k→∞

0

and

1

k2

k

∑
j=0

∥∥β
j
∥∥2

L
−−−→
k→∞

0

then (εn) is the innovation of (Xn).
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Inverse problems

Constructing the innovation

What about the case where the noise associated with the process is NOT
the innovation?
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Inverse problems

The case of a MAH(1)

Proposition

Consider the MAH(1) given by

Xn = en− l(en−1), n ∈ Z

where l ∈L and (en) is a H− white noise. We suppose that l is
symmetric, invertible, such that

∥∥(l−1)j0
∥∥

L
< 1 for some j0 ≥ 1. Moreover

l and Ce0 commute.
Then, the innovation of (Xn) is defined as εn = (I − l−1B)−1(I − lB)en
where B is the backward operator (B(xn) = xn−1), convergence takes place
in L2

H , and

Xn = εn− l−1(εn−1), n ∈ Z.

In addition one has
Cε0 = l2Ce0 .
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Inverse problems

An example

Example

Suppose that

l =
∞

∑
i=1

ai vi ⊗vi

where (vi ) is an orthonormal system in H and 1 < |a1| ≤ |a2| ≤ ...≤ a< ∞;
and that

Ce0 =
∞

∑
i=1

ci vi ⊗vi

then the above Proposition holds.
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Inverse problems

The case of an ARH(1)

Proposition

Consider the equation Xn = r(Xn−1) + ηn n ∈ Z
where (ηn) is a H−white noise and r ∈L , and suppose that

∃r−1 :
1

k

k

∑
j=1

∥∥r−j∥∥2

L
−−−→
k→∞

0,

then it has a stationary solution given by

Xn =− lim
k→∞

(L2
H)

k

∑
j=1

(1− j−1

k
) r−j(ηn+j), n ∈ Z.

If, in addition, r−1CX0 is symmetric and CX0(Is− (r∗)−2) 6= 0, then the
innovation of (Xn) is

εn = Xn− r−1(Xn−1) n ∈ Z
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Inverse problems

Starting from the best predictor

Principle: Given the best linear predictor (BLP) find the associated model.
Choice: Extended exponential smoothing in H :

X ∗n+1 = α

(
∞

∑
j=0

β
j(Xn−j)

)
,

where α and β belong to L and αβ = βα. Then one has

X ∗n+1 = α(Xn) + β (X ∗n ).
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Inverse problems

Associated model

Proposition

Suppose that
∥∥β j0

∥∥
L

< 1 and
∥∥(α + β )j0

∥∥
L

< 1 for some integer j0, and
that α 6= 0. If (Xn) is a regular zero-mean stationary process with
innovation (εn) and such that the BLP is

X ∗n+1 = α

(
∞

∑
j=0

β
j(Xn−j)

)
where αβ = βα, then (Xn) is an ARMAH (1,1):

Xn− (α + β )(Xn−1) = εn−β (εn−1), (2)

Conversely, if (Xn) satisfies 2, then X ∗n+1 is BLP for every n.
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Computing linear filters in Hilbert spaces

(X ,Y ) in G ×H real separable Hilbert spaces with spectral
decompositions:

CX = ∑
i∈I

αi vi ⊗vi (αi > 0, ∑
i∈I

αi < ∞)

and

CY = ∑
j∈J

βj wj ⊗wj (βj > 0, ∑
j∈J

βj < ∞)

I and J are finite or infinite. Let L (G ,H) be the space of continuous
linear operators from G to H. Set

FX = sp {l(X ), l ∈L (G ,H)}

where the closure is taken in L2
H = L2

H (Ω, A , P).
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Computing linear filters in Hilbert spaces

The best linear predictor

Proposition

The best linear predictor (BLP) of Y given X is

λ0(X ) = ∑
i∈I ,j∈J

γi j (vi ⊗wj)(X ) (L2
H)

where

γi j =
E (〈X , vi 〉G 〈Y , wj〉H)

E 〈X , vi 〉2G
, i ∈ I , j ∈ J
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Computing linear filters in Hilbert spaces

Proof

The proof uses the fact that

Ui j =
〈X , vi 〉G√

αi
.wj i ∈ I , j ∈ J,

is an orthonormal system in L2
H .
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Computing linear filters in Hilbert spaces

Continuity

λ0 is a PX−MLT. Continuity of λ0 appears in the next statement

Proposition

If there exists l0 ∈L (G ,H) such that

CX ,Y = l0CX ,

then the best linear predictor takes the form

l0(X ) = ∑
i∈I

〈X , vi 〉G
αi

CX ,Y (vi )
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Computing linear filters in Hilbert spaces

Converse

Proposition

If there exists l0 : G 7−→ H such that

l0(x) =
∞

∑
i=1

〈x , vi 〉G
αi

CX ,Y (vi ), x ∈ H, (H)

then l0 ∈L (G ,H) and CX ,Y = l0CX .
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Computing linear filters in Hilbert spaces

The gaussian case

In the gaussian case a similar result can be obtained without continuity
assumption:

Proposition

If G = H and the vector (X ,Y ) is gaussian then the conditional
expectation E (Y |X ) and the BLP coincide and have the form

E (Y |X ) = λ0(X ) = ∑
i∈I

〈X , vi 〉G
αi

CX ,Y (vi )

D.Bosq (LSTA, Paris 6) Functional linear filters 34 / 42



Computing linear filters in Hilbert spaces

The gaussian case

In the gaussian case a similar result can be obtained without continuity
assumption:

Proposition

If G = H and the vector (X ,Y ) is gaussian then the conditional
expectation E (Y |X ) and the BLP coincide and have the form

E (Y |X ) = λ0(X ) = ∑
i∈I

〈X , vi 〉G
αi

CX ,Y (vi )

D.Bosq (LSTA, Paris 6) Functional linear filters 34 / 42



Computing linear filters in Hilbert spaces

Proof

The proof uses the fact that the sequence

E (〈Y , y〉H |(〈X , v1〉G , ...,〈X , vm〉G )) =
m

∑
i=1

E (〈X , vi 〉G 〈Y , y〉H)

E (〈X , vi 〉2G )
〈X , vi 〉G ,

m ≥ 1, is a martingale in L2
H .
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Computing linear filters in Hilbert spaces

Basis of a LCS

The final statement is useful for computing a BLP

Proposition

The LCS GX of L2
G has the orthonormal basis

B =

{
〈X , vi 〉G

α
1/2

i

vj , i ∈ I , j ∈ I

}
∪

{
〈X , vi 〉G

α
1/2

i

uj , i ∈ I , j ∈ J
′

}
where

CX = ∑
i∈I

αi vi ⊗vi (αi > 0, ∑
i∈I

αi < ∞)

and (uj , j ∈ J
′
) is an orthonormal basis of the orthogonal complement of

the closed subspace of G generated by (vi , i ∈ I ).

(cf Bosq-Mourid (2012)).
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Computing linear filters in Hilbert spaces

Applications: model with noise

Consider the model

X = r(Y ) + ε

with r ∈L (H, G ) and CY ,ε = 0, where only X is observed, Then

CX ,Y = CY r∗

hence

λ0(X ) = ∑
i , j

βj

αi
〈vi , r(wj)〉H 〈X , vi 〉G wj .
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Computing linear filters in Hilbert spaces

Bayesian estimator

Modification of notation: (X , Θ) gaussian in G ×H, τ prior distribution
for Θ, then the Bayesian estimator of θ is

E (Θ |X ) = ∑
i , j

E (〈X , vi 〉G 〈Θ, wj〉H)

E (〈X , vi 〉2G )
〈X , vi 〉G wj

Existence of density not required,

G (resp. H) may be finite or infinite dimensional.
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Computing linear filters in Hilbert spaces

Tensorial product

Assume that (X , Y ) is gaussian and such that

E (Y |X ) = l0(X )

where l0 ∈L (G ,H). Thus

Y = l0(X ) + η

where η is strongly orthogonal to X . Then the tensorial product Y ⊗Y
has conditional expectation

E (Y ⊗Y |X ) = l0(X )⊗ l0(X ) +Cη ,

with

l0(X ) = ∑
i∈I

〈X , vi 〉G
αi

CX ,Y (vi ).
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Statistics...

Consider a sample (Xi , Yi ), 1≤ i ≤ n and suppose that Xn+1 is observed.
In order to “estimate” λ0(Xn+1) the following steps are necessary

Compute the empirical eigenvectors and eigenvalues from

Cn,X =
1

n

n

∑
i=1

Xi ⊗Xi

and

Cn,Y =
1

n

n

∑
i=1

Yi ⊗Yi

Choose a double truncation index

Find a doctoral student for the calculations.

D.Bosq (LSTA, Paris 6) Functional linear filters 40 / 42



Statistics...

Consider a sample (Xi , Yi ), 1≤ i ≤ n and suppose that Xn+1 is observed.
In order to “estimate” λ0(Xn+1) the following steps are necessary

Compute the empirical eigenvectors and eigenvalues from

Cn,X =
1

n

n

∑
i=1

Xi ⊗Xi

and

Cn,Y =
1

n

n

∑
i=1

Yi ⊗Yi

Choose a double truncation index

Find a doctoral student for the calculations.

D.Bosq (LSTA, Paris 6) Functional linear filters 40 / 42



Statistics...

Consider a sample (Xi , Yi ), 1≤ i ≤ n and suppose that Xn+1 is observed.
In order to “estimate” λ0(Xn+1) the following steps are necessary

Compute the empirical eigenvectors and eigenvalues from

Cn,X =
1

n

n

∑
i=1

Xi ⊗Xi

and

Cn,Y =
1

n

n

∑
i=1

Yi ⊗Yi

Choose a double truncation index

Find a doctoral student for the calculations.

D.Bosq (LSTA, Paris 6) Functional linear filters 40 / 42



Statistics...

Consider a sample (Xi , Yi ), 1≤ i ≤ n and suppose that Xn+1 is observed.
In order to “estimate” λ0(Xn+1) the following steps are necessary

Compute the empirical eigenvectors and eigenvalues from

Cn,X =
1

n

n

∑
i=1

Xi ⊗Xi

and

Cn,Y =
1

n

n

∑
i=1

Yi ⊗Yi

Choose a double truncation index

Find a doctoral student for the calculations.

D.Bosq (LSTA, Paris 6) Functional linear filters 40 / 42



Statistics...
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Statistics...
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