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Electricity demand data
Some salient features

(a) Long term trend. (b) Annual and week cycles.

(c) Daily pattern. (d) Demand (in Gw/h) as a function of
temperature (in ◦C)
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Electricity demand forecast

Short-term electricity demand forecast in literature

Time series analysis: sarima(x), Kalman filter [Dordonnat et al. (2009)]

Machine learning. [Devaine et al. (2010)]

Similarity search based methods. [Poggi (1994), Antoniadis et al. (2006)]

Regression: edf modelisation scheme [Bruhns et al. (2005)] , gam [Pierrot and
Goude (2011)], Bayesian approach [Launay , Philippe and Lamarche (2012)]

New challenges

Market liberalization: may produce variations on clients’ perimeter that
risk to induce nonstationarities on the signal.
Development of smart grids and smart meters.

But, almost all the models rely on a monoscale representation of the data
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Functional time series

FD as slices of a continuous process [Bosq, (1990)]

The prediction problem

Suppose one observes a square integrable continuous-time stochastic
process X = (X(t), t ∈ R) over the interval [0,T ], T > 0;
We want to predict X all over the segment [T ,T + δ], δ > 0
Divide the interval into n subintervals of equal size δ.
Consider the functional-valued discrete time stochastic process
Z = (Zk , k ∈ N), where N = {1, 2, . . .}, defined by

Xt

t
T T + δ0
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t
1δ 2δ 3δ 4δ 5δ 6δ0 T + δ

Z1(t) Z2(t) Z5(t)

Z3(t) Z4(t) Z6(t)

Zk (t) = X(t + (k − 1)δ)

k ∈ N ∀t ∈ [0, δ)
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Functional time series

FD as slices of a continuous process [Bosq, (1990)]

The prediction problem

Suppose one observes a square integrable continuous-time stochastic
process X = (X(t), t ∈ R) over the interval [0,T ], T > 0;
We want to predict X all over the segment [T ,T + δ], δ > 0
Divide the interval into n subintervals of equal size δ.
Consider the functional-valued discrete time stochastic process
Z = (Zk , k ∈ N), where N = {1, 2, . . .}, defined by

Xt

t
1δ 2δ 3δ 4δ 5δ 6δ0 T + δ

Z1(t) Z2(t) Z5(t)

Z3(t) Z4(t) Z6(t)

Zk (t) = X(t + (k − 1)δ)

k ∈ N ∀t ∈ [0, δ)

If X contents a δ−seasonal component, Z is particularly fruitful.
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Functional time series

Prediction of functional time series
Let (Zk , k ∈ Z) be a stationary sequence of H-valued r.v. Given Z1, . . . ,Zn we
want to predict the future value of Zn+1.

A predictor of Zn+1 using Z1,Z2, . . . ,Zn is

Z̃n+1 = E[Zn+1|Zn,Zn−1, . . . ,Z1].

Autoregressive Hilbertian process of order 1
The arh(1) centred process states that at each k,

Zk = ρ(Zk−1) + εk (1)

where ρ is a compact linear operator and {εk}k∈Z is an H−valued strong white
noise.
Under mild conditions, equation (1) has a unique solution which is a strictly
stationary process with innovation {εk}k∈Z. [Bosq, (1991)]
When Z is a zero-mean arh(1) process, the best predictor of Zn+1 given
{Z1, . . . ,Zn−1} is:

Z̃n+1 = ρ(Zn).
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Prediction algorithm

Let us predict Saturday 10 September 2005

We use Antoniadis et al., (2006) prediction method with corrections to cope
with non stationarity.

Use the last observed segment (n = 9/Sept/2005) to look for similar
segments in past.
Construct a similarity index SimilIndex (using a kernel).
Prediction can be written as

L̂oadn+1(t) =

n−1∑
m=1

SimilIndexm,n × Loadm+1(t)

First difference correction of the approximation part.
Use of groups to anticipate calendar transitions.
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SimilIndex date SimilIndex

2004-09-10 0.455
2003-09-05 0.141
2002-09-06 0.083
2004-09-03 0.070
2003-09-19 0.068
2000-09-08 0.058
2000-09-15 0.019
1999-09-10 0.017

similar past similar future



Wavelets to cope with fd

domain-transform technique
for hierarchical decomposing
finite energy signals
description in terms of a
broad trend (approximation
part), plus a set of localized
changes kept in the details
parts.

Discrete Wavelet Transform
If z ∈ L2([0, 1]) we can write it as

z(t) =

2j0−1∑
k=0

cj0,kφj0,k (t) +

∞∑
j=j0

2j−1∑
k=0

dj,kψj,k (t),

where cj,k =< g , φj,k >, dj,k =< g , ϕj,k > are the scale coefficients and
wavelet coefficients respectively, and the functions φ et ϕ are associated to a
orthogonal mra of L2([0, 1]).
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Approximation and details

In practice, we don’t dispose of the whole trajectory but only with a
(possibly noisy) sampling at 2J points, for some integer J .
Each approximated segment Zi,J (t) is broken up into two terms:

a smooth approximation Si (t) (lower freqs)
a set of details Di (t) (higher freqs)

Zi,J (t) =

2j0−1∑
k=0

c(i)
j0,kφj0,k (t)︸ ︷︷ ︸
Si (t)

+

J−1∑
j=j0

2j−1∑
k=0

d (i)
j,kψj,k (t)︸ ︷︷ ︸

Di (t)

The parameter j0 controls the separation. We set j0 = 0.

z̃J (t) = c0φ0,0(t) +

J−1∑
j=0

2j−1∑
k=0

dj,kψj,k (t).
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A two step prediction algorithm

Step I: Dissimilarity between segments
Search the past for segments that are similar to the last one.
For two observed series of length 2J say Zm and Zl we set for each scale j ≥ j0:

distj (Zm,Zl ) =

(
2j−1∑
k=0

(d (m)
j,k − d (l)

j,k )2

)1/2

Then, we aggregate over the scales taking into account the number of
coefficients at each scale

D(Zm,Zl ) =

J−1∑
j=j0

2−j/2distj (Zm,Zl )
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A two step prediction algorithm

Step 2: Kernel regression
Obtain the prediction of the scale coefficients at the finest resolution
Ξn+1 = {c(n+1)

J,k : k = 0, 1, . . . , 2J − 1} for Zn+1

Ξ̂n+1 =

n−1∑
m=1

wm,nΞm+1

wm,n =
K
(D(Zn,Zm)

hn

)∑n−1
m=1 K

(D(Zn,Zm)
hn

)
Finally, the prediction of Zn+1 can be written

Ẑn+1(t) =

2J−1∑
k=0

ĉ(n+1)
J,k φJ,k (t)
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carh process

(Z ,V ) = {(Zk ,Vk ) ∈ H × Rd , k ∈ Z} is a carh(1) process if it is stationary
and and such that,

Zk = a + ρVk (Zk−1 − a) + εk , k ∈ Z, (2)

where for each v ∈ Rd , av = Ev [Z0|V ], {εk}k∈Z is an H−white noise
independent of V , and {ρVk }k∈Z is a sequence of linear compact operators.

Theorem (Existence and uniqueness)

If supn ‖ρVn‖L < 1 a.s., then (2) defines a carh process with an unique
stationary solution given by

Zk = a +

∞∑
j=0

(
j−1∏
p=0

ρVk−p

)
(εk−j ),

with the convention
∏j−1

p=0 ρVk−p is the identity operator for j = 0.
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Conditional covariance operators

Conditional covariance and cross covariance operators (on V at the point
v ∈ Rd) are respectively defined by

z ∈ H 7→ Γvz = Ev [(Z0 − a)⊗ (Z0 − a)(z)|V ] and
z ∈ H 7→ ∆vz = Ev [(Z0 − a)⊗ (Z1 − a)(z)|V ],

where x ∈ H → (u ⊗ v)(x) =< u, x > v .

For each v ∈ Rd : these are trace-class operators, thus Hilbert-Schimdt
(additionally Γv is positive definite and selfadjoint)
Spectral decomposition of Γv , Γv =

∑
j∈N λv,j (ev,j ⊗ ev,j ), where

λv,1 ≥ λv,2 ≥ . . . ≥ 0 are the eigenvalues and (ev,j )j∈N the associated
eigenfunctions.
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Estimation of the conditional covariance operators

Nonparametric Nadaraya-Watson like estimators.
Context of dependent data (α−mixing framework)

âv,n =

n∑
i=1

wn,i (v , ha)Zi

Γ̂v,n =

n∑
i=1

wn,i (v , hγ)(Zi − ân(v))⊗ (Zi − ân(v))

∆̂v,n =

n∑
i=2

wn,i (v , hδ)(Zi−1 − ân(v))⊗ (Zi − ân(v))

where the weights wn,i are defined by

wn,i (v , h) =
K(h−1(Vi − v))∑n
i=1 K(h−1(Vi − v))

. (3)
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Estimation of ρv (1/2)

Two relation between the operators

∆v = ρv Γv and ∆∗v = Γvρ
∗
v .

If dim(H) <∞, the inversion of the operator Γv gives us a way to
estimate ρv .
Problem In the general case, the inverse of Γv is a problem: the operator is
not bounded and may not be defined over the whole space H ([Mas, 2000]).

However, for a well identify ρv we can define a linear measurable mapping Γ−1v
within a dense domain D

Γ−1
v
⊂ H, and using the closed graph theorem and the

fact that the range(∆∗v ) ⊂ D
Γ−1

v
, then restricted to D

Γ−1
v

we can write

ρ∗v = Γ−1v ∆∗v .

Classical results on linear operators allow us to extend ρ∗v by continuity to H.
Then, we focus on the estimation of ρ∗v .
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Estimation of ρv (2/2)

We extend the two class of estimators proposed by [Mas, (2000)] proposed on the
arh framework.
Let us call Pkn

v the projection operator from H to Hkn
v . Then, we define the

projection estimator of ρ∗v by

ρ̂∗v,n = (Pkn
v Γ̂v,nPkn

v )−1∆̂∗v,nPkn
v . (4)

A whole class of resolvent estimators can be obtained using the resolvent of Γv

ρ̂∗v,n,p = bn,p(Γ̂v,n)∆̂∗v,n, (5)

where we write bn,p,α(Γ̂v,n) = (Γ̂v,n + αnI)−(p+1) with p ≥ 0, αn ≥ 0, n ≥ 0.

Almost sure convergence results are obtained for all the propose estimator. In
addition, convergence on probability of both predictors ρ̂∗v,n(Zn+1) and
ρ̂∗v,n,p(Zn+1).
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Numerical illustration

Simulation and prediction
We extend the simulation strategies for arh processes [Guillas & Damon
(2000)] to the simple case of an carh process with d = 1 and V is a i.i.d.
sequence of Beta(β1, β2) rv.
Numerical experience: prediction of the electricity demand using the
temperature as exogenous information

Figure: Prediction of one simulated curve of an carh process (full line).
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