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A glimpse to the essential
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Y = (8,X)+ U with E[U(X,h)] =0, VheH,

with 8 € H and U is an error term.
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Let Y € R be a r.v. and X be a random function in (H, (-, -)) such that
g = E[YX] = E[(3,X)X] = T3
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> Observations — (Y}, Xj)1<i<n — statistical inverse problem

n ~
Construct estimators g = 1 3~ V;X; and T = 1

n
i=1 i=

(-, Xi) Xi.

1

» Objective: estimate non parametrically
e globally: the slope function 8 as a whole

Bosq (2000); Ferraty & Vieu (2006); Ramsay & Silverman (2002,2005); Cardot,

Ferraty & Sarda (2003); Hall & Horowitz (2007); Crambes, Kneip & Sarda (2009)
® |ocally: the value ¢(3) of a linear functional ¢ evaluated at

Cai & Hall (2006).
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Adaptive estimation in functional linear models
Qutline

Methodology

Background and model assumptions

Minimax theory

e Measure of performance

e Lower bound: global and local risk
e Minimax-optimal estimation

Adaptive estimation combining model selection and Lepski's method
o Adaptive global estimation
o Adaptive local estimation
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Methodology
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Adaptive estimation in functional linear models Background and model assumptions

Basic model assumptions
Let Y € R be a r.v. and X be a random function in (H, (-, -)) such that
Y = (8,X)+ U with E[U(X,h)] =0, Vh e H,
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® X is a centered Gaussian regressor with E||X||? < oo,
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® X and U are independent (X L U).

Define the covariance operator I associated with X
o [ :H — Hwith f — (I'f, h) :=E[(f,X)(X,h)], VheH,
which is positive semi-definite and nuclear. Rewrite the model equation

® (g, hy =E[Y(X,h)]=E[(B,X)(X,h)] = (T3, h), VYhecH.
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Let Y be a r.v. and X be a random function in (H, (-,-)) such that
g —E[YX] = E[(8, X)X] =: T3,
where B, g € H and I : H — H is nuclear.
Hadamard (1932): An inverse problem g = '3 is well posed, if:
B 3 solution 3 exists,
B the solution f is unique and

B the solution 8 depends continuously on g.

Assumption A2. There exists an unique solution of the equation g = I'5.

® Since the covariance operator I is nuclear, its (generalized) inverse !
is not continuous as long as the range of I is infinite dimensional.

Reconstruction of the slope function 3 is an ill-posed inverse problem.
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Let {f;}j>1 be a pre-specified ONB in H and [h]; := (h, ;) for all h € H.

Given a strictly positive sequence of weights w := (w;);>1 define

> the weigthed norm |[h|Z, := ", w; [h]? for h € H;

> the completion F,, of H with regard to ||| ,;

> the ellipsoid F}, := {h € Fy : ||h||2, < r} with radius r > 0.

Assumption A3. (Minimal regularity assumptions)

(i) The slope function 3 belongs to F} for some non-decreasing, un-
bounded sequence of weights b := (b;);>1 with by =1, and p > 0.
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Minimal regularity conditions
Let {f;}j>1 be a pre-specified ONB in H and [h]; := (h, ;) for all h € H.
Given a sequence of weights w := (wj)j>1 > 0 and a constant r > 1 define

> the set G of all strictly positive nuclear operators defined on H and

> its subset GI, = {T € G : r2||h|2, < |Th|12 < r2||A|2., V h € H]}.

W27

Assumption A3. (Minimal regularity assumptions)

(i) The covariance operator I' belongs to gj for some non-increasing,
summable sequence of weights v := (7j)j>1 with 71 =1, and d > 0.
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sup sup E[|£(3,5)H
regd gery

» Complexity of functional linear regression — lower bound

inf sup sup E[|£(3,8)]%] 2 R*[n; Fp.64.
B Tegd peFy

> B = (f)fmn[F]E[g]mn Lt <n is called minimax-optimal if

sup sup E[|L(Bms. B)?] < R*[n; FL.G70.
regd gery
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o L(3,8) = |¢(B) — €(B)| for some linear functional ¢.

Illustrations. Consider H = L2[0, 1].
» Point evaluation at ty € [0,1], i.e.,
Bto) = U(B) = 21 181j1€]; with [€]; = £i(to);
> Average value of /3 over an interval [0, a], i.e.,
a? fo t)dt = 4(B) = ZJ>1[5]J[€]J with [(]; = at fo j
> Weighted average derivative of j3, i.e.,

Jo B'(E)w(t)dt = £(B8) = Y., [BL[A); with [A; = [5 £(t)w(t)dt.
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Assumption A4. (Admissible measure of performance)

global: w := (wj)j>1 is a strictly positive sequence with w; = 1 such
that b/w = (bj/wj)j>1 is non-decreasing with limit zero.
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® global: sup sup IEHB— BHE) for some w = (w;j) > 0,
regd pery

e local: sup sup E[((3) — ¢(3)|? for some linear functional £.
regd pery

Assumption A4. (Admissible measure of performance)

global: w := (wj)j>1 is a strictly positive sequence with w; = 1 such
that b/w = (bj/wj)j>1 is non-decreasing with limit zero.

local: {fj},., belongs to the domain of ¢, i.e., [{]; := {(fj) is well-
defined, and the sequence ([¢];);>1 satisfies ZJ-}l[E]J?bjfl < 00.
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Let {f;} be the trigonometric basis in L2[0,1] and W} an ellipsoid in the
Sobolev space of p-times differentiable periodic functions.

» Assume that 8 € Wﬁ for some p > 0, i.e., b; = %P,
> Suppose I € gﬁj and two cases for v:

(p) polynomial decay, i.e., 7, =22, a > 1/2;
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o global risk: sup sup E|[3() — 89|12 for some p > s > 0,
regd pew,
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regd gews

® local risk: sup sup E|B(to) — B(to)|? for to € [0,1] and p > 1/2.
regd pewp

The Assumptions A3 and A4 are satisfied.
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Assume an iid n-sample of (Y, X). Under Assumption A1-A4 we have:
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Dimension reduction

Consider the equation g = 3. Given the ONB {f;};>1 and m € N define
Bm = (F) il [8]m with [g]m = E(Y[X]m) and [[m = E([X]m[X]5,).
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Adaptive estimation in functional linear models Minimax-optimal estimation

Dimension reduction: linear Galerkin approach

Consider the equation g = 3. Given the ONB {f;};>1 and m € N define
Bm = ()l [g]m with [g]m = E(Y[X]m) and [[m = E([X]m[X]f,).
Let H,, denote the linear subspace spanned by {fi,...,fy}. Since I > 0,

Hg - rﬁm” < Hg - th7 Vh e Hm)
and hence (3, is called Galerkin solution of g = '3 (c.f. Natterer (1977)).
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Dimension reduction: linear Galerkin approach

Consider the equation g = 3. Given the ONB {f;};>1 and m € N define
Bm = (£l ' [g]m with [g]m = E(Y[X]m) and [[m = E([X]m[X]5,).

Lemma (Bias due to dimension reduction)
Suppose Assumption A2-A4 and let ' € Qd.

> VB EFL: Bm—Bl2 Sy max{l 7'17}_
r 2 [z .. &2

> V,Be}—b L [0(Bm) — £(B)| ,Smax{z <=L, = S _J}

j>m 7" =1

2 -4 .
Assumption A5. The sequences (l)J>1 and (4;2);>1 are bounded.
J
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Minimax-optimal global and local estimation

Theorem (Cardot & JJ (2010), JJ & Schenk (2010))
Assume an iid n-sample of (Y, X).
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Minimax-optimal global and local estimation

Theorem (Cardot & JJ (2010), JJ & Schenk (2010))
Assume an iid n-sample of (Y, X). Under Assumption A1-A5 we have:

sup sup El|Bm: — BI2 < RE[m FL,G9] = R [m; Fp.G7,
regd BeFL

with m = arg mm{R’"[n fp,gd]}

m/

sup sup E|lms — €(8) < Relm FL,6% = R [m; 72,67,
regd pery

with m$ = arg min{R"[n; ]:p,gfyj]}-
m>1
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[llustration: minimax-optimal global and local estimation

Minimax-optimality. Under Assumption A1-A2 we have in case of
(p) for p+a > 2 with mt ~ n/(2P+2a+1) and m3 ~ nl/(2p+23)
® SUPregd SUPgewg EH@S:: — B2 S n~2p=s)/(2pt2at1),

® SUPregd SUPgews E[</§m; — B, Xnp1)2 | X1,...] S nApta)/(2p+2a+1)
(e) with m; ~ (log n)/(2) and m¢, ~ (log n)*/(22)

® SUPregd SUPgews EHBS;) — BO|2 < (log n)~(P—9)/a,

® SUPregd SUPgews E[(Bms — B, Xn41)? | X1, ...] S n~2(log n)1/(22)
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Adaptive estimation

B (f)t [F]Al[g]m ﬂ{n[rr ls<n} with m = arg mm{Contrastm + peny, },

1<m<M

Contrasty, := max_ {\E(,/B\k,;é’\mﬂz - ﬁeﬁk}

m<k<M
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Adaptive estimation

B (f)t [F]Al[g]m ﬂ{n[rr ls<n} with m = arg mln{Contrastm + peny, },

1<msM
Contrasty, := max_ {\E(/Bk,ﬂmﬂz - ﬁeﬁk}
m<k<M
Lemma
If (peny, ..., peng,) is non-decreasing, then for all 1 < m < M we have

_ . 1
|,C(5,77,B)| < 7pen,, +78b1db 442 max <|£(ﬁk,ﬁk)|26penk>

m<k<M +

with bias,, = supysp, [£(Bk, B)[, m > 1.
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Outline

@ Methodology
@ Background and model assumptions

@ Minimax theory

@ Adaptive estimation combining model selection and Lepski’'s method
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Adaptive global estimation

Bi = (f)%[?]%l[fg\]@ Loif=2 o<} with m := arg min {Contrast,, + pen,,},
- m 1<m<M
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Bi = (f)f%[ﬂ%l[fg\]@ Loif=2 o<n} with m := arg min {Contrast,, + pen,,},
- m 1<m<M

Contrast, = sup {Hﬁk - Bm”i - penk} and pen,, :=co2 6mnt
m<k<M

> Var(U + (8 — Bm, X)) < 02 :=2{EY? + [g],[[}[g]m}

| mVm 1/2 — 1/2
BB D) A= max [Vl M V] s,

1<k<m

> 0y = mAp,
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Adaptive global estimation

ﬁm = (f)t [r]~1[g]m ﬂ{n[rr ls<n} with m := alr<ngBI1V111{Contrastm + pen,, }

Contrast, = sup {Hﬁk - Bm”i - penk} and pen,, :=co2 6mnt

m<k<M

> Var(U + (8 — Bim, X)) < 07, := 2{EY? + [g] [, [8]m }

log(AmVm 1/2 1/2
> O = mBy BT A= max [Vl VAL

> M= arg min {ml N5 s [Velmls > rrfsgs |~ 1

\m\
Theorem (Comte & JJ (2011)) Under Assumption Al A5 we have:

~ C gdy]:ﬂ
> sup sup E[|37 — BlE S {max(4m, 8m)} 4 SF270)
regd perf 1<me -
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Adaptive global estimation

B = (f)t [F]~1[g]m ﬂ{ll[rlf o<} with m := arg min {Contrast,, + pen,,},
1<ms<M

Contrast, = sup {Hﬁk - EmHi - penk} and pen,, :=co2 6mnt

m<k<M

> Var(U + (8 — Bim, X)) < 07, := 2{EY? + [g] [, [8]m }

log(AmVm 1/2 1/2
> O = mBy BT A= max [Vl VAL

> M= arg min {ml N5 s [Velmls > rrfsgs |~ 1

sm<

Theorem (Comte & JJ (2011)) Under Assumption A1-A5 we have:

~ . C(G5,F

> sup sup BBz — B3 S min {max(4m, in)} 4 IR
regd pery Ll

Remember: Rj[n;fg,g,‘yj] = min1<m<m{max(‘g—:, Zjn;l n%)}
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~2 -1

mhn

Q'))

Contrast, :== sup {||3k — Bml2 - ﬁele} and pen,, := l4c o},
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Adaptive global estimation

B (f)t [F]Al[g]m ﬂ{n[rr ls<n} with m = arg mln{Contrastm + peny, },

1<ms<M
Contrast, :== sup {||3k — Bml2 - ﬁele} and peil,, := 1452, opm n L
m<k<M
> G =2{n XL VP + Bl [Blm)
= ~ log(Bm 2 ~ 1/2 1/2
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> = arg min {m] [l [Vlalls > g7} — 1
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Adaptive global estimation

B (f)t [F]Al[g]m ﬂ{n[rr ls<n} with m = arg mln{Contrastm + peny, },

1<ms<M
Contrast, :== sup {||3k — Bml2 - ﬁele} and peil,, := 1452, opm n L
m<k<M
> G =2{n XL VP + Bl [Blm)
= ~ log(Bm 2 ~ 1/2 1/2
> O 1= mAp LR Ry = max [Vl [ 19T s

> = arg min {m] [l [Vlalls > g7} — 1

2<m<Mw

Theorem (Comte & JJ (2011)) Under Assumption A1—A5 we have:
~ c(gd,F
> sup sup B[~ IR S _min {max(gm, %)} LEZL)
regd pery 1<m<M=
Remember: RX[n; F{,Gd] = minigmeoo {max (5=, 3277, n%)}
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[llustration

Let {f;} be the trigonometric basis in L?[0,1] and W} an ellipsoid in the
Sobolev space of p-times differentiable periodic functions.
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Sobolev space of p-times differentiable periodic functions.
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Adaptive estimation in functional linear models Adaptive global estimation

[[lustration

Let {f;} be the trigonometric basis in L2[0,1] and W} an ellipsoid in the
Sobolev space of p-times differentiable periodic functions.

B = (FLM51 8] L fI=ts<ny With 7 := arg min {Contrast,, + pen,,},
- ” 1<m<M

Contrasty, := sup {HB,((S) — E,(,f)Hz — ﬁe\nk}.
m<k<M

Minimax-optimality. Under Assumption A1-A2 we have in case of
(p) forp+a>=2

® global: sup sup IEHB,(;) — B2 < p~2p=s)/(2p+2a+1)
regd pewp

(¢)

® global: sup sup IE||§,(§) — BO)||2 < (log n)~(P—9)/2,
regd pewy
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Adaptive local estimation

[f] [I‘]Al[g]m H{II[F]’ o<} with m := arg min {Contrastm + pen,, }
1<m<M
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Adaptive local estimation
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Adaptive local estimation
=[5 [I‘]Al[g]m H{II[F]’ o<} with m = arg mm{Contrastm + peny, },

1<m<M
Contrast,, := sup {]Zk —lm|? — peny } and pen,, :=7c52, m H',‘;’g"

m<k<M

> 52, = 2{n"t 0 V2 + [B15 [T E]m}
> O = 1qua<xm[£];[r]£1[€]&

> W= ang min {71 10500 > g | — 1

2<m<M*
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Adaptive local estimation
=[5 [I‘]Al[g]m H{II[F]’ o<} with m = arg mm{Contrastm + peny, },

1<m</\/l
Contrast,, := sup {]Zk —lm|? — peny } and pen,, :=7c52, m H',‘;’g"

m<k<M

> 52, = 2{n"t 0 V2 + [B15 [T E]m}
T T1-1
> Om = 12"ka<xm[€]2[r]K [€]x.
> 1= arg min {715 (45100 > g7 | — 1
2<m<M¢t

Theorem (JJ & Schenk (2011)) Under Assumption A1-A5 we have:

o~ g 7;
> sup sup Elln — ()2 S RSl L, 0] + 070
regd pery
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Adaptive local estimation
=[5 [I‘]Al[g]m H{II[F]’ o<} with m = arg mm{Contrastm + peny, },

1<m</\/l
Contrast,, := sup {]Zk —lm|? — peny } and pen,, :=7c52, m H',‘;’g"

m<k<M

> 52, = 2{n"t 0 V2 + [B15 [T E]m}
T T1-1
> Om = 12"kixm[€]z[r]5 [€]x.
> 1= arg min {715 (45100 > g7 | — 1
2<m<M¢t

Theorem (JJ & Schenk (2011)) Under Assumption A1-A5 we have:
Fp,g9] + 9T

> sup sup Ewrﬁ - g(ﬂ) w 5 RE [1+Iogn’
regd pery

Remember: ij[n;}"ﬁ,gg] is the minimax-rate.
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Let {f;} be the trigonometric basis in L?[0,1] and W} an ellipsoid in the
Sobolev space of p-times differentiable periodic functions.
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Adaptive estimation in functional linear models Adaptive local estimation
[llustration

Let {f;} be the trigonometric basis in L2[0,1] and W} an ellipsoid in the
Sobolev space of p-times differentiable periodic functions.

U = 1AL N5 815 1y fy-1 <y With 7 := arg min { Contrasty, + pen,,},

1<m<M
Contrast, :== sup {]Zk —lm|? — peny }
m<k<M

Minimax-optimality. Under Assumption A1-A2 we have in case of
(p) forp+a=>2

e local: sup sup E|Bx(to) — B(t0)]2 < (Iogn)7(2pfl)/(2p+2a).
regd gews

()

® |ocal: sup sup E|/§,7,(to) — ﬂ(t0)|2 < (log n)*(2"*1)/(23).
regd gewy
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Summary

In functional linear regression: Y = (3, X) + U and E(UX) =0

» a lower bound is derived globally and locally considering (abstract)
smoothness conditions and general link conditions;
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Summary

In functional linear regression: Y = (3, X) + U and E(UX) =0

» a lower bound is derived globally and locally considering (abstract)
smoothness conditions and general link conditions;

> an estimator of 3 is proposed and its minimax-optimality is shown

® requiring an optimal choice of a dimension parameter
» a minimax-optimal data-driven estimator of /3 is constructed

® combining model selection and Lepski's method;
» the results are illustrated using classical smoothness assumptions.
Extensions:

{> Sparse irregular repeated noisy measurements of X(-);
¢ Structured or unstructured sparse representation of 3();
¢ Observational dependence.
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