Adaptive estimation in functional linear models

Jan Johannes

Université catholique de Louvain

High dimensional and dependent functional data University of Bristol, UK, September 2012

► Functional linear model

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U$ with $\mathbb{E}[U\langle X, h \rangle] = 0$, $\forall h \in \mathbb{H}$, with $\beta \in \mathbb{H}$ and U is an error term.

Functional linear model

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y\langle X, h \rangle = \langle \beta, X \rangle \langle X, h \rangle + U\langle X, h \rangle$ with $\mathbb{E}[U\langle X, h \rangle] = 0$, with $\beta \in \mathbb{H}$ and U is an error term.

Jan Johannes (UCL)

► Functional linear model

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $\mathbb{E}[Y\langle X, h \rangle] = \mathbb{E}[\langle \beta, X \rangle \langle X, h \rangle]$

with $\beta \in \mathbb{H}$ and U is an error term.

► Functional linear model

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $\langle g, h \rangle := \mathbb{E}[Y\langle X, h \rangle] = \mathbb{E}[\langle \beta, X \rangle \langle X, h \rangle] \qquad \forall h \in \mathbb{H}$ with $\beta, g \in \mathbb{H}$.

► Functional linear model

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $\langle g, h \rangle := \mathbb{E}[Y\langle X, h \rangle] = \mathbb{E}[\langle \beta, X \rangle \langle X, h \rangle] =: \langle \Gamma \beta, h \rangle, \quad \forall h \in \mathbb{H}$ with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

Jan Johannes (UCL) 1/28

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

Jan Johannes (UCL) 1/28

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

▶ Observations – $(Y_i, X_i)_{1 \leq i \leq n}$

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

▶ Observations – $(Y_i, X_i)_{1 \leq i \leq n}$

Construct estimators
$$\widehat{g} = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i$$
 and $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \langle \cdot, X_i \rangle X_i$.

Jan Johannes (UCL) 1/28

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

▶ Observations – $(Y_i, X_i)_{1 \le i \le n}$ – statistical inverse problem

Construct estimators
$$\widehat{g} = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i$$
 and $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \langle \cdot, X_i \rangle X_i$.

Jan Johannes (UCL) 1/28

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

▶ Observations – $(Y_i, X_i)_{1 \leq i \leq n}$ – statistical inverse problem

Construct estimators
$$\widehat{g} = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i$$
 and $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \langle \cdot, X_i \rangle X_i$.

▶ Objective: estimate non parametrically

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

- ▶ Observations $(Y_i, X_i)_{1 \leq i \leq n}$ statistical inverse problem
 - Construct estimators $\widehat{g} = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i$ and $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \langle \cdot, X_i \rangle X_i$.
- ► Objective: estimate non parametrically
 - globally: the slope function β as a whole

• locally: the value $\ell(\beta)$ of a linear functional ℓ evaluated at β

Jan Johannes (UCL) 1/28

► Functional linear model – inverse problem

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta$

with $\beta, g \in \mathbb{H}$ and covariance operator $\Gamma : \mathbb{H} \to \mathbb{H}$ associated with X.

▶ Observations – $(Y_i, X_i)_{1 \leq i \leq n}$ – statistical inverse problem

Construct estimators
$$\widehat{g} = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i$$
 and $\widehat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \langle \cdot, X_i \rangle X_i$.

- ► Objective: estimate non parametrically
 - globally: the slope function β as a whole

Bosq (2000); Ferraty & Vieu (2006); Ramsay & Silverman (2002,2005); Cardot, Ferraty & Sarda (2003); Hall & Horowitz (2007); Crambes, Kneip & Sarda (2009)

ullet locally: the value $\ell(eta)$ of a linear functional ℓ evaluated at eta

Cai & Hall (2006).

Jan Johannes (UCL) 1/28

$$|\mathcal{L}(\widetilde{\beta},\beta)|^2$$

$$\mathbb{E}\big[\,|\mathcal{L}(\widetilde{\beta},\beta)|^2\big]$$

$$\sup_{\beta \in \mathcal{F}} \mathbb{E} \big[|\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big]$$

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta},\beta)|^2 \big]$$

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta},\beta)|^2 \big]$$

▶ Measure the performance of any estimator $\widetilde{\beta}$ – maximal risk

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta},\beta)|^2 \big]$$

Complexity of functional linear regression – lower bound

$$\inf_{\widetilde{\beta}} \sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[|\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big] \gtrsim R^*[\mathbf{n}; \mathcal{F}, \mathcal{G}].$$

Jan Johannes (UCL) 2/28

ightharpoonup Measure the performance of any estimator \widetilde{eta} – maximal risk

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta},\beta)|^2 \big]$$

Complexity of functional linear regression – lower bound

$$\inf_{\widetilde{\beta}} \sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[|\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big] \gtrsim R^*[\mathbf{n}; \mathcal{F}, \mathcal{G}].$$

• An estimator $\widehat{\beta}$ is called minimax-optimal if

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widehat{\beta}, \beta)|^2 \big] \lesssim R^*[n\,; \mathcal{F}, \mathcal{G}],$$

Jan Johannes (UCL) 2/28

ightharpoonup Measure the performance of any estimator \widetilde{eta} – maximal risk

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big]$$

Complexity of functional linear regression – lower bound

$$\inf_{\widetilde{\beta}} \sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \big[|\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big] \gtrsim R^*[\mathbf{n}; \mathcal{F}, \mathcal{G}].$$

• An estimator $\widehat{\beta}$ is called minimax-optimal if

$$\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \left[|\mathcal{L}(\widehat{\beta}, \beta)|^2 \right] \lesssim R^*[n; \mathcal{F}, \mathcal{G}],$$

and adaptive if $\widehat{\beta}$ depends neither on \mathcal{F} nor \mathcal{G} .

Jan Johannes (UCL) 2/28

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0$, $\forall h \in \mathbb{H}$,

where
$$\beta = \sum_{j=1}^{m} \langle \beta, f_j \rangle f_j$$
 for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} ;

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \sum_{j=1}^m \langle eta, f_j
angle \langle f_j, X
angle + U$$
 with $\mathbb{E}[U\langle X, h
angle] = 0, orall h \in \mathbb{H}$

where
$$\beta = \sum_{j=1}^{m} \langle \beta, f_j \rangle f_j$$
 for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} ;

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \sum_{j=1}^{m} \langle \beta, f_j \rangle \langle f_j, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0, \forall h \in \mathbb{H}$

where $\beta = \sum_{j=1}^m \langle \beta, f_j \rangle f_j$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \le j \le m$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_{\underline{m}}^{\underline{t}}[\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \le j \le m$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta=(f)_{\underline{m}}^t[\beta]_{\underline{m}}$ for some ONS $\{f_j:1\leqslant j\leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \le j \le m$.
- Normal equation

$$Y[X]_{\underline{m}} = [X]_{\underline{m}}[X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U[X]_{\underline{m}}$$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta=(f)_{\underline{m}}^t[\beta]_{\underline{m}}$ for some ONS $\{f_j:1\leqslant j\leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \le j \le m$.
- Normal equation

$$\mathbb{E}(Y[X]_{\underline{m}}) = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)[\beta]_{\underline{m}}$$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta=(f)_{\underline{m}}^t[\beta]_{\underline{m}}$ for some ONS $\{f_j:1\leqslant j\leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \leqslant j \leqslant m$.
- ► Normal equation

$$[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}}) = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)[\beta]_{\underline{m}} =: [\Gamma]_{\underline{m}}[\beta]_{\underline{m}}$$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_m^t [\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_{\underline{m}}^{\underline{t}}[\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} ;

- param. vector $[\beta]_{\underline{m}}$ with entries $[\beta]_j := \langle \beta, f_j \rangle$, $1 \leqslant j \leqslant m$;
- rand. vector $[X]_{\underline{m}}$ with entries $[X]_j := \langle f_j, X \rangle$, $1 \leqslant j \leqslant m$;
- vector $(f)_{\underline{m}}$ with entries $(f)_j := f_j$, $1 \le j \le m$.
- Normal equation

$$[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}}) = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)[\beta]_{\underline{m}} =: [\Gamma]_{\underline{m}}[\beta]_{\underline{m}}$$

Solution of the normal equation

$$\beta = (f)_m^t [\Gamma]_m^{-1} [g]_m$$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_{\underline{m}}^{t}[\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} .

Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m := \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m := \mathbb{E}([X]_m[X]_m^t)$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_{\underline{m}}^{t}[\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} .

- Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} := \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \leq i \leq n}$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_m^t [\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} .

- ▶ Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with
 - $[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}}) \quad \text{ and } \quad [\Gamma]_{\underline{m}} := \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t).$
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then define

$$[\widehat{g}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$$
 and $[\widehat{\Gamma}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$

Jan Johannes (UCL) 4/28

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta=(f)_{\underline{m}}^t[\beta]_{\underline{m}}$ for some ONS $\{f_j:1\leqslant j\leqslant m\}$ in $\mathbb{H}.$

- ▶ Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with
 - $[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}}) \quad \text{ and } \quad [\Gamma]_{\underline{m}} := \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t).$
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then define

$$[\widehat{g}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$$
 and $[\widehat{\Gamma}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$

▶ Estimate the solution $\widehat{\beta} := (f)_{\underline{m}}^{\underline{t}} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_m^t [\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} .

- Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m := \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m := \mathbb{E}([X]_m[X]_m^t)$.
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \leq i \leq n}$, then define

$$[\widehat{g}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$$
 and $[\widehat{\Gamma}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$

• Estimate the solution $\widehat{\beta} := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}$.

Under mild assumptions $[\widehat{\beta}]_m$ is consistent, asymptotic normal!

Jan Johannes (UCL) 4/28

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = [X]_{\underline{m}}^{t}[\beta]_{\underline{m}} + U$$
 with $\mathbb{E}(U[X]_{\underline{m}}) \equiv 0$,

where $\beta = (f)_m^t [\beta]_{\underline{m}}$ for some ONS $\{f_j : 1 \leqslant j \leqslant m\}$ in \mathbb{H} .

- Solution of the normal equation: $\beta = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} := \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} := \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \leq i \leq n}$, then define

$$[\widehat{g}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$$
 and $[\widehat{\Gamma}]_{\underline{m}} := \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$

▶ Estimate the solution $\widehat{\beta} := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}$.

Under mild assumptions $[\widehat{\beta}]_m$ is consistent, asymptotic normal!

In general an infinite ONS $\{f_j\}_{j\in\mathbb{N}}$ is necessary to develop β !

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_i\}_{i \in \mathbb{N}}$ and $m \in \mathbb{N}$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U \quad \text{ with } \mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H},$

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$ and $m \in \mathbb{N}$.

Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m [X]_m^t)$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U$ with $\mathbb{E}(U\langle X, h \rangle) = 0$, $\forall h \in \mathbb{H}$, where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_i\}_{i \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \leq i \leq n}$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U$ with $\mathbb{E}(U\langle X, h \rangle) = 0$, $\forall h \in \mathbb{H}$, where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_i\}_{i \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m[X]_m^t)$.
- ▶ Suppose an *n*-sample $(Y_i, X_i)_{1 \leqslant i \leqslant n}$, then consider again

$$[\widehat{g}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$$
 and $[\widehat{\Gamma}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t)$.

Jan Johannes (UCL) 5/28

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U$ with $\mathbb{E}(U\langle X, h \rangle) = 0$, $\forall h \in \mathbb{H}$, where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_i\}_{i \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m[X]_m^t)$.
- Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then consider again $[\widehat{g}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$ and $[\widehat{\Gamma}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t)$.
- Estimate globally β with $\widehat{\beta}_m := (f)_m^t [\widehat{\Gamma}]_m^{-1} [\widehat{g}]_m$

Methodology: dimension reduction & thresholding

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U$ with $\mathbb{E}(U\langle X, h \rangle) = 0$, $\forall h \in \mathbb{H}$, where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_i\}_{i \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m[X]_m^t)$.
- Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then consider again $[\widehat{g}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}})$ and $[\widehat{\Gamma}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t)$.
- Estimate globally β with $\widehat{\beta}_m := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_m^{-1}\|_s \leqslant n\}}$.

Methodology: dimension reduction & thresholding

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U \quad \text{ with } \mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H},$

- where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$ and $m \in \mathbb{N}$.
- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.
- Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then consider again $[\widehat{g}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}}) \quad \text{and} \quad [\widehat{\Gamma}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$
- Estimate globally β with $\widehat{\beta}_m := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \mathbbm{1}_{\{\|[\widehat{\Gamma}]_m^{-1}\|_{\mathbf{s}} \leqslant n\}}$.
- Estimate locally $\ell(\beta)$ with $\widehat{\ell}_m := \ell(\widehat{\beta}_m)$

Jan Johannes (UCL) 5/28

Methodology: dimension reduction & thresholding

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that $Y = \langle \beta, X \rangle + U \quad \text{ with } \mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H},$

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- Solution of the normal equation: $\beta_m = (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.
- Suppose an *n*-sample $(Y_i, X_i)_{1 \le i \le n}$, then consider again $[\widehat{g}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i[X_i]_{\underline{m}}) \quad \text{and} \quad [\widehat{\Gamma}]_{\underline{m}} = \frac{1}{n} \sum_{i=1}^{n} ([X_i]_{\underline{m}}[X_i]_{\underline{m}}^t).$
- Estimate globally β with $\widehat{\beta}_m := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \mathbbm{1}_{\{\|\|\widehat{\Gamma}\|_{\underline{m}}^{-1}\|_{\mathbf{s}} \leq n\}}$.
- Estimate locally $\ell(\beta)$ with $\widehat{\ell}_m := \ell(\widehat{\beta}_m) = [\ell]_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \mathbbm{1}_{\{\|\widehat{\Gamma}\|_{\underline{m}}^{-1}\|_{\underline{s}} \leqslant \eta\}}$.

Jan Johannes (UCL) 5/28

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0$, $\forall h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$ and $m \in \mathbb{N}$.

▶ Thresholded projection estimator: $\widehat{\beta}_m := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \mathbbm{1}_{\{\|[\widehat{\Gamma}]_m^{-1}\|_s \leqslant n\}}$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$ and $m \in \mathbb{N}$.

- ▶ Thresholded projection estimator: $\widehat{\beta}_m := (f)_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{m}}^{-1}\|_s \leqslant n\}}$
- ► Select *m* by using a penalized minimum contrast criterion

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$.

- ▶ Thresholded projection estimator: $\widehat{\beta}_{\widehat{m}} := (f)_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_s \leqslant n\}}$
- ightharpoonup Select \widehat{m} by using a penalized minimum contrast criterion

$$\widehat{m} := \arg \min_{1 \leq m \leq \widehat{M}} \left\{ \operatorname{Contrast}_m + \widehat{\operatorname{pen}}_m \right\}.$$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$.

- $\blacktriangleright \text{ Thresholded projection estimator: } \widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_s \leqslant n\}}$
- ▶ Select \widehat{m} by using a penalized minimum contrast criterion

$$\widehat{m} := \underset{1 \leq m \leq \widehat{M}}{\operatorname{arg min}} \left\{ \operatorname{Contrast}_m + \widehat{\operatorname{pen}}_m \right\}.$$

▶ Measure its performance: $\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \left[|\mathcal{L}(\widehat{\beta}_{\widehat{m}}, \beta)|^2 \right]$

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$.

- ▶ Thresholded projection estimator: $\widehat{eta}_{\widehat{m}} := (f)^t_{\widehat{\underline{m}}} [\widehat{\Gamma}]^{-1}_{\widehat{\underline{m}}} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\widehat{\underline{m}}}\|_s \leqslant n\}}$
- \blacktriangleright Select \widehat{m} by using a penalized minimum contrast criterion

$$\widehat{m} := \underset{1 \leq m \leq \widehat{M}}{\operatorname{arg \; min}} \left\{ \underset{1 \leq m \leq \widehat{M}}{\operatorname{Contrast}}_m + \widehat{\operatorname{pen}}_m \right\}.$$

▶ Measure its performance: $\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E}\left[|\mathcal{L}(\widehat{\beta}_{\widehat{m}}, \beta)|^2 \right]$ then

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ |\mathcal{L}(\widehat{\beta}_k, \widehat{\beta}_m)|^2 - \widehat{\mathrm{pen}}_k \right\}$$

which is inspired by the recent work of Goldenshluger and Lepski [2011].

Jan Johannes (UCL)

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}(U\langle X, h \rangle) = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$. Consider an infinite ONB $\{f_j\}_{j \in \mathbb{N}}$.

- ▶ Thresholded projection estimator: $\widehat{\beta}_{\widehat{m}} := (f)_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}}$
- \blacktriangleright Select \widehat{m} by using a penalized minimum contrast criterion

$$\widehat{m} := \underset{1 \leqslant m \leqslant \widehat{M}}{\operatorname{arg min}} \left\{ \operatorname{Contrast}_m + \widehat{\operatorname{pen}}_m \right\}.$$

▶ Measure its performance: $\sup_{\Gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{F}} \mathbb{E} \left[|\mathcal{L}(\widehat{\beta}_{\widehat{m}}, \beta)|^2 \right]$ then

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{\pmb{M}}} \left\{ |\mathcal{L}(\widehat{\beta}_k, \widehat{\beta}_m)|^2 - \widehat{\mathbf{pen}}_k \right\}$$

which is inspired by the recent work of Goldenshluger and Lepski [2011].

Jan Johannes (UCL)

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$ is an unknown slope function,

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0$, $\forall h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$ is an unknown slope function,

Assumption A1.

- X is a centered Gaussian regressor with $\mathbb{E}\|X\|^2 < \infty$,
- U is a centered Gaussian error term with $\mathbb{E}U^2 < \infty$,
- X and U are independent $(X \perp \!\!\! \perp U)$.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$ is an unknown slope function,

Assumption A1.

- X is a centered Gaussian regressor with $\mathbb{E}\|X\|^2 < \infty$,
- U is a centered Gaussian error term with $\mathbb{E}U^2 < \infty$,
- X and U are independent $(X \perp \!\!\! \perp U)$.

Define the covariance operator Γ associated with X

• $\Gamma : \mathbb{H} \to \mathbb{H}$ with $f \mapsto \langle \Gamma f, h \rangle := \mathbb{E}[\langle f, X \rangle \langle X, h \rangle], \forall h \in \mathbb{H}$,

which is positive semi-definite and nuclear.

Let $Y \in \mathbb{R}$ be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$Y = \langle \beta, X \rangle + U$$
 with $\mathbb{E}[U\langle X, h \rangle] = 0, \ \forall \ h \in \mathbb{H}$,

where $\beta \in \mathbb{H}$ is an unknown slope function,

Assumption A1.

- X is a centered Gaussian regressor with $\mathbb{E}\|X\|^2 < \infty$,
- U is a centered Gaussian error term with $\mathbb{E}U^2 < \infty$,
- X and U are independent $(X \perp \!\!\! \perp U)$.

Define the covariance operator Γ associated with X

• $\Gamma : \mathbb{H} \to \mathbb{H}$ with $f \mapsto \langle \Gamma f, h \rangle := \mathbb{E}[\langle f, X \rangle \langle X, h \rangle], \quad \forall h \in \mathbb{H}$,

which is positive semi-definite and nuclear. Rewrite the model equation

• $\langle g, h \rangle := \mathbb{E}[Y \langle X, h \rangle] = \mathbb{E}[\langle \beta, X \rangle \langle X, h \rangle] =: \langle \Gamma \beta, h \rangle, \quad \forall h \in \mathbb{H}.$

III-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

III-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

Hadamard (1932): An inverse problem $g = \Gamma \beta$ is well posed, if:

- \blacksquare a solution β exists,
- \blacksquare the solution β is unique and
- the solution β depends continuously on g.

Ill-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

Hadamard (1932): An inverse problem $g = \Gamma \beta$ is well posed, if:

- \blacksquare a solution β exists,
- **I** the solution β is unique and
- **I** the solution β depends continuously on g.

Engel, Hanke & Neubauer (2000); Cardot, Ferraty & Sarda (2003)

Ill-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

Hadamard (1932): An inverse problem $g = \Gamma \beta$ is well posed, if:

- \blacksquare a solution β exists,
- \blacksquare the solution β is unique and
- **I** the solution β depends continuously on g.

Assumption A2. There exists an unique solution of the equation $g = \Gamma \beta$.

Ill-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

Hadamard (1932): An inverse problem $g = \Gamma \beta$ is well posed, if:

- \blacksquare a solution β exists,
- \blacksquare the solution β is unique and
- the solution β depends continuously on g.

Assumption A2. There exists an unique solution of the equation $g = \Gamma \beta$.

• Since the covariance operator Γ is nuclear, its (generalized) inverse Γ^{-1} is not continuous as long as the range of Γ is infinite dimensional.

III-posed inverse problem

Let Y be a r.v. and X be a random function in $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ such that

$$g := \mathbb{E}[YX] = \mathbb{E}[\langle \beta, X \rangle X] =: \Gamma \beta,$$

where $\beta, g \in \mathbb{H}$ and $\Gamma : \mathbb{H} \to \mathbb{H}$ is nuclear.

Hadamard (1932): An inverse problem $g = \Gamma \beta$ is well posed, if:

- \blacksquare a solution β exists.
- \blacksquare the solution β is unique and
- the solution β depends continuously on g.

Assumption A2. There exists an unique solution of the equation $g = \Gamma \beta$.

• Since the covariance operator Γ is nuclear, its (generalized) inverse Γ^{-1} is not continuous as long as the range of Γ is infinite dimensional.

Reconstruction of the slope function β is an ill-posed inverse problem.

Let $\{f_i\}_{i\geq 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_i:=\langle h,f_i\rangle$ for all $h\in\mathbb H$.

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a strictly positive sequence of weights $w:=(w_j)_{j\geqslant 1}$ define

▶ the weighhed norm $||h||_w^2 := \sum_{j \ge 1} w_j [h]_j^2$ for $h \in \mathbb{H}$;

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a strictly positive sequence of weights $w:=(w_j)_{j\geqslant 1}$ define

- ▶ the weigthed norm $\|h\|_{w}^{2} := \sum_{j \geqslant 1} w_{j} [h]_{j}^{2}$ for $h \in \mathbb{H}$;
- ▶ the completion \mathcal{F}_w of \mathbb{H} with regard to $\|\cdot\|_w$;

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a strictly positive sequence of weights $w:=(w_j)_{j\geqslant 1}$ define

- ▶ the weigthed norm $\|h\|_{w}^{2} := \sum_{j \geqslant 1} w_{j} [h]_{j}^{2}$ for $h \in \mathbb{H}$;
- ▶ the completion \mathcal{F}_w of \mathbb{H} with regard to $\|\cdot\|_w$;
- ▶ the ellipsoid $\mathcal{F}_w^r := \left\{ h \in \mathcal{F}_w : \|h\|_w^2 \leqslant r \right\}$ with radius r > 0.

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a strictly positive sequence of weights $w:=(w_j)_{j\geqslant 1}$ define

- ▶ the weigthed norm $\|h\|_{w}^{2} := \sum_{j \geqslant 1} w_{j} [h]_{j}^{2}$ for $h \in \mathbb{H}$;
- ▶ the completion \mathcal{F}_w of \mathbb{H} with regard to $\|\cdot\|_w$;
- ▶ the ellipsoid $\mathcal{F}_w^r := \left\{ h \in \mathcal{F}_w : \|h\|_w^2 \leqslant r \right\}$ with radius r > 0.

Assumption A3. (Minimal regularity assumptions)

(i) The slope function β belongs to \mathcal{F}_b^{ρ} for some non-decreasing, unbounded sequence of weights $b := (b_i)_{i \ge 1}$ with $b_1 = 1$, and $\rho > 0$.

Let $\{f_i\}_{i\geq 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_i:=\langle h,f_i\rangle$ for all $h\in\mathbb H$.

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

 \blacktriangleright the set $\mathcal G$ of all strictly positive nuclear operators defined on $\mathbb H$ and

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in\mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

- \blacktriangleright the set ${\cal G}$ of all strictly positive nuclear operators defined on ${\mathbb H}$ and
- ▶ its subset $\mathcal{G}_w^r := \left\{ \Gamma \in \mathcal{G} : r^{-2} \|h\|_{w^2}^2 \leqslant \|\Gamma h\|^2 \leqslant r^2 \|h\|_{w^2}^2, \ \forall \ h \in \mathbb{H} \right\}.$

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

- \blacktriangleright the set ${\cal G}$ of all strictly positive nuclear operators defined on ${\mathbb H}$ and
- $\blacktriangleright \text{ its subset } \mathcal{G}^r_w := \big\{ \Gamma \in \mathcal{G} : r^{-2} \|h\|^2_{w^2} \leqslant \|\Gamma h\|^2 \leqslant r^2 \|h\|^2_{w^2}, \ \forall \ h \in \mathbb{H} \big\}.$

Preliminary observations.

Let $(\lambda_i)_{i \geq 1}$ denote the sequence of eigenvalues of $\Gamma \in \mathcal{G}_w^r$, then

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

- \blacktriangleright the set ${\cal G}$ of all strictly positive nuclear operators defined on ${\mathbb H}$ and
- $\blacktriangleright \text{ its subset } \mathcal{G}^r_w := \big\{ \Gamma \in \mathcal{G} : r^{-2} \|h\|^2_{w^2} \leqslant \|\Gamma h\|^2 \leqslant r^2 \|h\|^2_{w^2}, \ \forall \ h \in \mathbb{H} \big\}.$

Preliminary observations.

Let $(\lambda_j)_{j\geqslant 1}$ denote the sequence of eigenvalues of $\Gamma\in\mathcal{G}_w^r$, then

•
$$r^{-1}w_j \leqslant \langle \Gamma f_j, f_j \rangle \leqslant r w_j$$
 $j \geqslant 1$.

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

- \blacktriangleright the set ${\cal G}$ of all strictly positive nuclear operators defined on ${\mathbb H}$ and
- ▶ its subset $\mathcal{G}_w^r := \left\{ \Gamma \in \mathcal{G} : r^{-2} \|h\|_{w^2}^2 \leqslant \|\Gamma h\|^2 \leqslant r^2 \|h\|_{w^2}^2, \ \forall \ h \in \mathbb{H} \right\}.$

Preliminary observations.

Let $(\lambda_j)_{j\geqslant 1}$ denote the sequence of eigenvalues of $\Gamma\in\mathcal{G}_w^r$, then

• $r^{-1}w_i \leqslant \langle \Gamma f_i, f_i \rangle \leqslant r w_i$ and $r^{-1}w_i \leqslant \lambda_i \leqslant r w_i$, $j \geqslant 1$.

Let $\{f_j\}_{j\geqslant 1}$ be a pre-specified ONB in $\mathbb H$ and $[h]_j:=\langle h,f_j\rangle$ for all $h\in \mathbb H$. Given a sequence of weights $w:=(w_j)_{j\geqslant 1}>0$ and a constant $r\geqslant 1$ define

- lacktriangle the set ${\mathcal G}$ of all strictly positive nuclear operators defined on ${\mathbb H}$ and
- $\blacktriangleright \text{ its subset } \mathcal{G}^r_w := \big\{ \Gamma \in \mathcal{G} : r^{-2} \|h\|^2_{w^2} \leqslant \|\Gamma h\|^2 \leqslant r^2 \|h\|^2_{w^2}, \ \forall \ h \in \mathbb{H} \big\}.$

Assumption A3. (Minimal regularity assumptions)

(ii) The covariance operator Γ belongs to \mathcal{G}_{γ}^d for some non-increasing, summable sequence of weights $\gamma := (\gamma_j)_{j \ge 1}$ with $\gamma_1 = 1$, and d > 0.

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Minimax-optimal estimation

lacktriangle Measure the performance of any estimator \widetilde{eta} – maximal risk

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E}\big[\,|\mathcal{L}(\widetilde{\beta},\beta)|^2\big]$$

Minimax-optimal estimation

lacktriangle Measure the performance of any estimator \widetilde{eta} – maximal risk

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E} \big[\, |\mathcal{L} \big(\widetilde{\beta}, \beta \big)|^2 \big]$$

Complexity of functional linear regression – lower bound

$$\inf_{\widetilde{\beta}} \sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E} \big[|\mathcal{L}(\widetilde{\beta}, \beta)|^2 \big] \gtrsim R^*[n; \mathcal{F}^\rho_b, \mathcal{G}^d_{\gamma}].$$

Minimax-optimal estimation

lacktriangle Measure the performance of any estimator \widetilde{eta} – maximal risk

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E}\big[\,|\mathcal{L}(\widetilde{\beta},\beta)|^2\big]$$

Complexity of functional linear regression – lower bound

$$\inf_{\widetilde{\beta}} \sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E} \big[\, |\mathcal{L}(\widetilde{\beta},\beta)|^2 \big] \gtrsim R^*[n\,;\mathcal{F}^\rho_b,\mathcal{G}^d_{\gamma}].$$

 $\blacktriangleright \widehat{\beta}_{m_n^*} = (f)_{\underline{m}_n^*}^t [\widehat{\Gamma}]_{\underline{m}_n^*}^{-1} [\widehat{g}]_{\underline{m}_n^*} \mathbb{1}_{\{\|\widehat{\Gamma}\|_{m_n^*}^{-1}\| \leqslant n\}} \text{ is called } \underline{\text{minimax-optimal } if}$

$$\sup_{\Gamma \in \mathcal{G}_{n}^{d}} \sup_{\beta \in \mathcal{F}_{n}^{\rho}} \mathbb{E}\left[|\mathcal{L}(\widehat{\beta}_{m_{n}^{*}}, \beta)|^{2}\right] \lesssim R^{*}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}].$$

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_i) > 0$.

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

Mean integrated squared error (c.f. Hall & Horowitz (2007))

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

 $(\omega_j=1)$ Mean integrated squared error (c.f. Hall & Horowitz (2007))

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

 $(\omega_j=1)$ Mean integrated squared error (c.f. Hall & Horowitz (2007))

MISE of the s-th derivative $\widetilde{\beta}^{(s)}$ of $\widetilde{\beta}$, i.e.,

 $\mathbb{E}\|\widetilde{\beta}^{(s)} - \beta^{(s)}\|^2 \sim \mathbb{E}\|\widetilde{\beta} - \beta\|_{\omega}^2$ if $\{f_j\}$ is the trigonometric basis.

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

 $(\omega_j=1)$ Mean integrated squared error (c.f. Hall & Horowitz (2007))

 $(\omega_j = j^{2s})$ MISE of the s-th derivative $\widetilde{\beta}^{(s)}$ of $\widetilde{\beta}$, i.e.,

 $\mathbb{E}\|\widetilde{\beta}^{(s)} - \beta^{(s)}\|^2 \sim \mathbb{E}\|\widetilde{\beta} - \beta\|_{\omega}^2$ if $\{f_j\}$ is the trigonometric basis.

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

 $(\omega_j=1)$ Mean integrated squared error (c.f. Hall & Horowitz (2007))

$$(\omega_j = j^{2s})$$
 MISE of the s-th derivative $\widetilde{\beta}^{(s)}$ of $\widetilde{\beta}$, i.e.,

$$\mathbb{E}\|\widetilde{\beta}^{(s)} - \beta^{(s)}\|^2 \sim \mathbb{E}\|\widetilde{\beta} - \beta\|_{\omega}^2$$
 if $\{f_j\}$ is the trigonometric basis.

Mean prediction error (c.f. Crambes et al. (2009)), i.e.,

$$\mathbb{E} \Big[|\langle \widetilde{\beta}, X_{n+1} \rangle - \langle \beta, X_{n+1} \rangle|^2 \, \Big| \, X_1, \dots, X_n \Big] \sim \mathbb{E} \|\widetilde{\beta} - \beta\|_{\omega}^2 \text{ if } \Gamma \in \mathcal{G}_{\gamma}^d.$$

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = \|\widetilde{\beta} - \beta\|_{\omega}$ for some $\omega := (\omega_j) > 0$.

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

 $(\omega_j=1)$ Mean integrated squared error (c.f. Hall & Horowitz (2007))

$$(\omega_j = j^{2s})$$
 MISE of the s-th derivative $\widetilde{\beta}^{(s)}$ of $\widetilde{\beta}$, i.e.,

$$\mathbb{E}\|\widetilde{\beta}^{(s)} - \beta^{(s)}\|^2 \sim \mathbb{E}\|\widetilde{\beta} - \beta\|_{\omega}^2$$
 if $\{f_j\}$ is the trigonometric basis.

$$(\omega_j = \gamma_j)$$
 Mean prediction error (c.f. Crambes et al. (2009)), i.e.,

$$\mathbb{E}\Big[|\langle \widetilde{\beta}, X_{n+1} \rangle - \langle \beta, X_{n+1} \rangle|^2 \, \Big| \, X_1, \dots, X_n \Big] \sim \mathbb{E}\|\widetilde{\beta} - \beta\|_{\omega}^2 \text{ if } \Gamma \in \mathcal{G}_{\gamma}^d.$$

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = |\ell(\widetilde{\beta}) - \ell(\beta)|$ for some linear functional ℓ .

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = |\ell(\widetilde{\beta}) - \ell(\beta)|$ for some linear functional ℓ .

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

▶ Point evaluation at $t_0 \in [0, 1]$, i.e.,

$$\beta(t_0) = \ell(\beta) = \sum_{j \geqslant 1} [\beta]_j [\ell]_j$$
 with $[\ell]_j = f_j(t_0)$;

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = |\ell(\widetilde{\beta}) - \ell(\beta)|$ for some linear functional ℓ .

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

- ▶ Point evaluation at $t_0 \in [0, 1]$, i.e.,
 - $\beta(t_0) = \ell(\beta) = \sum_{i \ge 1} [\beta]_j [\ell]_j$ with $[\ell]_j = f_j(t_0)$;
- \blacktriangleright Average value of β over an interval [0, a], i.e.,

$$a^{-1} \int_0^a \beta(t) dt = \ell(\beta) = \sum_{j \geqslant 1} [\beta]_j [\ell]_j \text{ with } [\ell]_j = a^{-1} \int_0^a f_j(t) dt;$$

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the loss

• $\mathcal{L}(\widetilde{\beta}, \beta) = |\ell(\widetilde{\beta}) - \ell(\beta)|$ for some linear functional ℓ .

Illustrations. Consider $\mathbb{H} = L^2[0,1]$.

- Point evaluation at $t_0 \in [0, 1]$, i.e., $\beta(t_0) = \ell(\beta) = \sum_{j \geqslant 1} [\beta]_j [\ell]_j \text{ with } [\ell]_j = f_j(t_0);$
- ► Average value of β over an interval [0, a], i.e., $a^{-1} \int_0^a \beta(t) dt = \ell(\beta) = \sum_{j \geqslant 1} [\beta]_j [\ell]_j$ with $[\ell]_j = a^{-1} \int_0^a f_j(t) dt$;
- ▶ Weighted average derivative of β , i.e., $\int_0^1 \beta'(t)w(t)dt = \ell(\beta) = \sum_{i \ge 1} [\beta]_j[\ell]_j \text{ with } [\ell]_j = \int_0^1 f_i'(t)w(t)dt.$

Measure of performance

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the maximal risk

- global: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E} \|\widetilde{\beta} \beta\|^2_{\omega} \text{ for some } \omega := (\omega_j) > 0,$
- local: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E}|\ell(\widetilde{\beta}) \ell(\beta)|^2$ for some linear functional ℓ .

Measure of performance

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the maximal risk

- global: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^b_{\rho}} \mathbb{E} \|\widetilde{\beta} \beta\|^2_{\omega}$ for some $\omega := (\omega_j) > 0$,
- local: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E} |\ell(\widetilde{\beta}) \ell(\beta)|^2$ for some linear functional ℓ .

Assumption A4. (Admissible measure of performance)

global: $\omega := (\omega_j)_{j \geqslant 1}$ is a strictly positive sequence with $\omega_1 = 1$ such that $b/\omega = (b_i/\omega_i)_{i \geqslant 1}$ is non-decreasing with limit zero.

Measure of performance

Let $\widetilde{\beta}$ be an estimator of the slope function β . Consider the maximal risk

- global: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^\rho_b} \mathbb{E} \|\widetilde{\beta} \beta\|^2_{\omega} \text{ for some } \omega := (\omega_j) > 0,$
- local: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E} |\ell(\widetilde{\beta}) \ell(\beta)|^2$ for some linear functional ℓ .

Assumption A4. (Admissible measure of performance)

global: $\omega:=(\omega_j)_{j\geqslant 1}$ is a strictly positive sequence with $\omega_1=1$ such that $b/\omega=(b_i/\omega_j)_{j\geqslant 1}$ is non-decreasing with limit zero.

local: $\{f_j\}_{j\geqslant 1}$ belongs to the domain of ℓ , i.e., $[\ell]_j:=\ell(f_j)$ is well-defined, and the sequence $([\ell]_j)_{j\geqslant 1}$ satisfies $\sum_{i\geqslant 1}[\ell]_j^2b_i^{-1}<\infty$.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^{ρ} an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

• Assume that $\beta \in \mathcal{W}_p^{\rho}$ for some p > 0, i.e., $b_i = j^{-2p}$.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

- Assume that $\beta \in \mathcal{W}_p^{\rho}$ for some p > 0, i.e., $b_j = j^{-2p}$.
- ▶ Suppose $\Gamma \in \mathcal{G}^d_{\gamma}$ and two cases for γ :
- (p) polynomial decay, i.e., $\gamma_j = j^{-2a}$, a > 1/2;

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

- ▶ Assume that $\beta \in \mathcal{W}^{\rho}_{p}$ for some p > 0, i.e., $b_{j} = j^{-2p}$.
- ▶ Suppose $\Gamma \in \mathcal{G}^d_{\gamma}$ and two cases for γ :
- (p) polynomial decay, i.e., $\gamma_j = j^{-2a}$, a > 1/2;
- (e) exponential decay, i.e., $\gamma_j = \exp(-j^{2a} + 1)$, a > 0.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

- Assume that $\beta \in \mathcal{W}^{\rho}_{p}$ for some p > 0, i.e., $b_{j} = j^{-2p}$.
- ▶ Suppose $\Gamma \in \mathcal{G}^d_{\gamma}$ and two cases for γ :
- (p) polynomial decay, i.e., $\gamma_j = j^{-2a}$, a > 1/2;
- (e) exponential decay, i.e., $\gamma_j = \exp(-j^{2a} + 1)$, a > 0.
- global risk: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^p_{\rho}} \mathbb{E} \|\widetilde{\beta}^{(s)} \beta^{(s)}\|^2 \text{ for some } p > s \geqslant 0,$

:
$$\sup_{\Gamma \in \mathcal{G}_{\alpha}^{d}} \sup_{\beta \in \mathcal{W}_{\rho}^{p}} \mathbb{E} \left[|\langle \widetilde{\beta} - \beta, X_{n+1} \rangle|^{2} \mid X_{1}, \dots, X_{n} \right],$$

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

- Assume that $\beta \in \mathcal{W}^{\rho}_{p}$ for some p > 0, i.e., $b_{j} = j^{-2p}$.
- ▶ Suppose $\Gamma \in \mathcal{G}^d_{\gamma}$ and two cases for γ :
- (p) polynomial decay, i.e., $\gamma_j = j^{-2a}$, a > 1/2;
- (e) exponential decay, i.e., $\gamma_j = \exp(-j^{2a} + 1)$, a > 0.
- global risk: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^\rho_p} \mathbb{E} \|\widetilde{\beta}^{(s)} \beta^{(s)}\|^2 \text{ for some } p > s \geqslant 0,$

$$: \sup_{\Gamma \in \mathcal{G}_{\alpha}^{d}} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E} \Big[|\langle \widetilde{\beta} - \beta, X_{n+1} \rangle|^{2} \, \Big| \, X_{1}, \dots, X_{n} \Big],$$

• local risk: $\sup_{\Gamma \in \mathcal{G}_{\alpha}^d} \sup_{\beta \in \mathcal{W}_p^d} \mathbb{E} |\widetilde{\beta}(t_0) - \beta(t_0)|^2$ for $t_0 \in [0,1]$ and p > 1/2.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

- Assume that $\beta \in \mathcal{W}_p^{\rho}$ for some p > 0, i.e., $b_j = j^{-2p}$.
- ▶ Suppose $\Gamma \in \mathcal{G}^d_{\gamma}$ and two cases for γ :
- (p) polynomial decay, i.e., $\gamma_j = j^{-2a}$, a > 1/2;
- (e) exponential decay, i.e., $\gamma_j = \exp(-j^{2a} + 1)$, a > 0.
- global risk: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^{\rho}_{p}} \mathbb{E} \|\widetilde{\beta}^{(s)} \beta^{(s)}\|^2 \text{ for some } p > s \geqslant 0,$

$$: \sup_{\Gamma \in \mathcal{G}_{\gamma}^{d}} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E} \Big[|\langle \widetilde{\beta} - \beta, X_{n+1} \rangle|^{2} \, \Big| \, X_{1}, \dots, X_{n} \Big],$$

• local risk: $\sup_{\Gamma \in \mathcal{G}_n^d} \sup_{\beta \in \mathcal{W}_p^{\rho}} \mathbb{E}|\widetilde{\beta}(t_0) - \beta(t_0)|^2 \text{ for } t_0 \in [0,1] \text{ and } \rho > 1/2.$

The Assumptions A3 and A4 are satisfied.

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

17/28

Lower bound: global and local risk

Theorem (Cardot & JJ (2010), JJ & Schenk (2011)) Assume an iid n-sample of (Y, X).

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

$$\inf_{\widetilde{\beta}}\inf_{\Gamma\in\mathcal{G}^d_{\gamma}}\sup_{\beta\in\mathcal{F}^\rho_b}\mathbb{E}\|\widetilde{\beta}-\beta\|^2_{\omega}\gtrsim R^*_{\omega}[n;\mathcal{F}^\rho_b,\mathcal{G}^d_{\gamma}]:=\min_{m\geqslant 1}\Bigl\{R^m_{\omega}[n;\mathcal{F}^\rho_b,\mathcal{G}^d_{\gamma}]\Bigr\}$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

$$\inf_{\widetilde{\beta}}\inf_{\mathbf{\Gamma}\in\mathcal{G}_{\gamma}^{\mathbf{d}}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}\|\widetilde{\beta}-\beta\|_{\omega}^{2}\gtrsim R_{\omega}^{*}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\omega}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]\Bigr\}$$

with
$$R_{\omega}^{m}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] := \max\left(\frac{\omega_{m}}{b_{m}}, \frac{1}{n} \sum_{j=1}^{m} \frac{\omega_{j}}{\gamma_{j}}\right)$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

$$\inf_{\widetilde{\beta}}\inf_{\mathbf{\Gamma}\in\mathcal{G}_{\gamma}^{\mathbf{d}}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}\|\widetilde{\beta}-\beta\|_{\omega}^{2}\gtrsim R_{\omega}^{*}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\omega}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]\Bigr\}$$

with
$$R_{\omega}^{m}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] := \max\left(\frac{\omega_{m}}{b_{m}}, \frac{1}{n} \sum_{j=1}^{m} \frac{\omega_{j}}{\gamma_{j}}\right),$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

$$\inf_{\widetilde{\beta}}\inf_{\mathbf{\Gamma}\in\mathcal{G}_{\gamma}^{\mathbf{d}}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}\|\widetilde{\beta}-\beta\|_{\omega}^{2}\gtrsim R_{\omega}^{*}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\omega}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]\Bigr\}$$

with
$$R_{\omega}^{m}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] := \max\left(\frac{\omega_{m}}{b_{m}}, \frac{1}{n} \sum_{j=1}^{m} \frac{\omega_{j}}{\gamma_{j}}\right)$$

$$\inf_{\widetilde{\ell}}\inf_{\Gamma\in\mathcal{G}_{\gamma}^{d}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}|\widetilde{\ell}-\ell(\beta)|^{2}\gtrsim R_{\ell}^{\diamond}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\ell}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]\Bigr\}$$

Lower bound: global and local risk

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

Assume an iid n-sample of (Y, X). Under Assumption A1-A4 we have:

$$\inf_{\widetilde{\beta}}\inf_{\mathbf{\Gamma}\in\mathcal{G}_{\gamma}^{\mathbf{d}}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}\|\widetilde{\beta}-\beta\|_{\omega}^{2}\gtrsim R_{\omega}^{*}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\omega}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{\mathbf{d}}]\Bigr\}$$

with
$$R_{\omega}^{m}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] := \max\left(\frac{\omega_{m}}{b_{m}}, \frac{1}{n} \sum_{j=1}^{m} \frac{\omega_{j}}{\gamma_{j}}\right)$$

$$\inf_{\widetilde{\ell}}\inf_{\Gamma\in\mathcal{G}_{\gamma}^{d}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}|\widetilde{\ell}-\ell(\beta)|^{2}\gtrsim R_{\ell}^{\diamond}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]:=\min_{m\geqslant 1}\Bigl\{R_{\ell}^{m}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]\Bigr\}$$

with
$$R_{\ell}^m[n; \mathcal{F}_b^{\rho}, \mathcal{G}_{\gamma}^d] := \max\Bigl\{\sum_{i>m} rac{[\ell]_j^2}{b_j}, \max\left(rac{\gamma_m}{b_m}, rac{1}{n}
ight)\sum_{j=1}^m rac{[\ell]_j^2}{\gamma_j}\Bigr\}.$$

Jan Johannes (UCL) 17/28

Lower bound: global and local risk

Theorem (Cardot & JJ (2010), JJ & Schenk (2011))

Assume an iid n-sample of (Y, X). Under Assumption A1-A4 we have:

$$\inf_{\widetilde{\beta}}\inf_{\Gamma\in\mathcal{G}^{\mathbf{d}}_{\gamma}}\sup_{\beta\in\mathcal{F}^{\mathbf{b}}_{b}}\mathbb{E}\|\widetilde{\beta}-\beta\|_{\omega}^{2}\gtrsim R_{\omega}^{*}[\mathbf{n};\mathcal{F}^{\rho}_{b},\mathcal{G}^{\mathbf{d}}_{\gamma}]:=\min_{\mathbf{m}\geqslant 1}\Bigl\{R_{\omega}^{\mathbf{m}}[\mathbf{n};\mathcal{F}^{\rho}_{b},\mathcal{G}^{\mathbf{d}}_{\gamma}]\Bigr\}$$

with
$$R_{\omega}^{m}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] := \max\left(\frac{\omega_{m}}{b_{m}}, \frac{1}{n} \sum_{j=1}^{m} \frac{\omega_{j}}{\gamma_{j}}\right)$$

$$\inf_{\widetilde{\ell}}\inf_{\Gamma\in\mathcal{G}_{\gamma}^{d}}\sup_{\beta\in\mathcal{F}_{b}^{\rho}}\mathbb{E}|\widetilde{\ell}-\ell(\beta)|^{2}\gtrsim R_{\ell}^{\diamond}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]:=\min_{\mathbf{m}\geqslant1}\Bigl\{R_{\ell}^{\mathbf{m}}[\mathbf{n};\mathcal{F}_{b}^{\rho},\mathcal{G}_{\gamma}^{d}]\Bigr\}$$

with
$$R_{\ell}^{\textit{m}}[\textit{n};\mathcal{F}_{\textit{b}}^{\rho},\mathcal{G}_{\gamma}^{\textit{d}}] := \max\Bigl\{\sum_{j>m} \frac{[\ell]_{j}^{2}}{\textit{b}_{j}}, \max\left(\frac{\gamma_{\textit{m}}}{\textit{b}_{\textit{m}}},\frac{1}{\textit{n}}\right)\sum_{j=1}^{\textit{m}} \frac{[\ell]_{j}^{2}}{\gamma_{j}}\Bigr\}.$$

Jan Johannes (UCL) 17/28

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Dimension reduction

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j\geqslant 1}$ and $m \in \mathbb{N}$ define

$$\beta_m:=(f)_{\underline{m}}^t[\Gamma]_{\underline{m}}^{-1}[g]_{\underline{m}} \text{ with } [g]_{\underline{m}}=\mathbb{E}(Y[X]_{\underline{m}}) \text{ and } [\Gamma]_{\underline{m}}=\mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t).$$

Dimension reduction

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_m^t [\Gamma]_m^{-1} [g]_m$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m[X]_m^t)$.

Let \mathbb{H}_m denote the linear subspace spanned by $\{f_1, \ldots, f_m\}$.

Dimension reduction

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.

Let \mathbb{H}_m denote the linear subspace spanned by $\{f_1,\ldots,f_m\}$. Since $\Gamma>0$,

$$\|g - \Gamma \beta_m\| \leq \|g - \Gamma h\|, \quad \forall h \in \mathbb{H}_m,$$

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_m^t [\Gamma]_m^{-1} [g]_m$ with $[g]_m = \mathbb{E}(Y[X]_m)$ and $[\Gamma]_m = \mathbb{E}([X]_m[X]_m^t)$.

Let \mathbb{H}_m denote the linear subspace spanned by $\{f_1,\ldots,f_m\}$. Since $\Gamma>0$,

$$\|g - \Gamma \beta_m\| \leq \|g - \Gamma h\|, \quad \forall h \in \mathbb{H}_m,$$

and hence β_m is called Galerkin solution of $g = \Gamma \beta$ (c.f. Natterer (1977)).

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.

Lemma (Bias due to dimension reduction) Suppose Assumption A2-A4 and let $\Gamma \in \mathcal{G}_{\gamma}^d$.

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j\geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.

Lemma (Bias due to dimension reduction) Suppose Assumption A2-A4 and let $\Gamma \in \mathcal{G}^d_{\gamma}$.

$$\blacktriangleright \ \forall \, \beta \in \mathcal{F}^{\rho}_b : \|\beta_m - \beta\|^2_{\omega} \lesssim \tfrac{\omega_m}{b_m} \max \Bigl\{1, \tfrac{\gamma_m^2}{\omega_m}\Bigr\}.$$

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.

Lemma (Bias due to dimension reduction) Suppose Assumption A2-A4 and let $\Gamma \in \mathcal{G}^d_{\gamma}$.

- $\blacktriangleright \ \forall \, \beta \in \mathcal{F}_b^\rho : \|\beta_{\mathit{m}} \beta\|_\omega^2 \lesssim \tfrac{\omega_{\mathit{m}}}{b_{\mathit{m}}} \max \Bigl\{1, \tfrac{\gamma_{\mathit{m}}^2}{\omega_{\mathit{m}}}\Bigr\}.$
- $\blacktriangleright \ \forall \, \beta \in \mathcal{F}_b^{\rho} : |\ell(\beta_m) \ell(\beta)|^2 \lesssim \max \Bigl\{ \sum_{j>m} \frac{[\ell]_j^2}{b_j}, \frac{\gamma_m}{b_m} \sum_{j=1}^m \frac{[\ell]_j^2}{\gamma_j} \Bigr\}.$

Consider the equation $g = \Gamma \beta$. Given the ONB $\{f_j\}_{j \geqslant 1}$ and $m \in \mathbb{N}$ define $\beta_m := (f)_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}$ with $[g]_{\underline{m}} = \mathbb{E}(Y[X]_{\underline{m}})$ and $[\Gamma]_{\underline{m}} = \mathbb{E}([X]_{\underline{m}}[X]_{\underline{m}}^t)$.

Lemma (Bias due to dimension reduction)

Suppose Assumption A2-A4 and let $\Gamma \in \mathcal{G}_{\gamma}^d$.

- $\blacktriangleright \ \forall \, \beta \in \mathcal{F}^{\rho}_b : \|\beta_{\textit{m}} \beta\|^2_{\omega} \lesssim \tfrac{\omega_{\textit{m}}}{b_{\textit{m}}} \max \Bigl\{1, \tfrac{\gamma^2_{\textit{m}}}{\omega_{\textit{m}}}\Bigr\}.$
- $\blacktriangleright \ \forall \, \beta \in \mathcal{F}_b^{\rho} : |\ell(\beta_m) \ell(\beta)|^2 \lesssim \max \Big\{ \sum_{j>m} \frac{[\ell]_j^2}{b_j}, \frac{\gamma_m}{b_m} \sum_{j=1}^m \frac{[\ell]_j^2}{\gamma_j} \Big\}.$

Assumption A5. The sequences $(\frac{\gamma_j^2}{\omega_i})_{j\geqslant 1}$ and $(\frac{j^4\gamma_j}{b_i})_{j\geqslant 1}$ are bounded.

Jan Johannes (UCL)

Theorem (Cardot & JJ (2010), JJ & Schenk (2010)) Assume an iid n-sample of (Y, X).

Theorem (Cardot & JJ (2010), JJ & Schenk (2010)) Assume an iid n-sample of (Y, X). Under Assumption A1-A5 we have:

$$\sup_{\Gamma \in \mathcal{G}_{\gamma}^{d}} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E} \| \widehat{\beta}_{m_{n}^{*}} - \beta \|_{\omega}^{2} \lesssim R_{\omega}^{*}[n; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}]$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2010))

Assume an iid n-sample of (Y, X). Under Assumption A1-A5 we have:

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_{b}} \mathbb{E} \|\widehat{\beta}_{\mathbf{m}^*_{\mathbf{n}}} - \beta\|_{\omega}^2 \lesssim R^*_{\omega}[\mathbf{n}; \mathcal{F}^{\rho}_{b}, \mathcal{G}^d_{\gamma}] = R^{\mathbf{m}^*_{\mathbf{n}}}_{\omega}[\mathbf{n}; \mathcal{F}^{\rho}_{b}, \mathcal{G}^d_{\gamma}],$$

$$\text{ with } m_n^* = \underset{m \geqslant 1}{\arg\min} \big\{ R_\omega^m[n; \mathcal{F}_b^\rho, \mathcal{G}_\gamma^d] \big\},$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2010)) Assume an iid n-sample of (Y, X). Under Assumption A1-A5 we have:

$$\sup_{\Gamma \in \mathcal{G}^{d}_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_{b}} \mathbb{E} \|\widehat{\beta}_{m_{n}^{*}} - \beta\|_{\omega}^{2} \lesssim R_{\omega}^{*}[n; \mathcal{F}^{\rho}_{b}, \mathcal{G}^{d}_{\gamma}] = R_{\omega}^{m_{n}^{*}}[n; \mathcal{F}^{\rho}_{b}, \mathcal{G}^{d}_{\gamma}],$$
with $m_{n}^{*} = \underset{m \geqslant 1}{\operatorname{arg min}} \{R_{\omega}^{m}[n; \mathcal{F}^{\rho}_{b}, \mathcal{G}^{d}_{\gamma}]\},$

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E} |\widehat{\ell}_{\boldsymbol{m}^{\diamond}_{\boldsymbol{n}}} - \ell(\beta)|^2 \lesssim R^{\diamond}_{\ell}[\boldsymbol{n}; \mathcal{F}^{\rho}_b, \mathcal{G}^d_{\gamma}]$$

Theorem (Cardot & JJ (2010), JJ & Schenk (2010))

Assume an iid n-sample of (Y, X). Under Assumption A1-A5 we have:

$$\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{F}^{\rho}_b} \mathbb{E} \| \widehat{\beta}_{\mathbf{m}^*_n} - \beta \|_{\omega}^2 \lesssim R^*_{\omega}[\mathbf{n}; \mathcal{F}^{\rho}_b, \mathcal{G}^d_{\gamma}] = R^{\mathbf{m}^*_n}_{\omega}[\mathbf{n}; \mathcal{F}^{\rho}_b, \mathcal{G}^d_{\gamma}],$$

with
$$m_n^* = \underset{m\geqslant 1}{\operatorname{arg min}} \big\{ R_\omega^m[n; \mathcal{F}_b^\rho, \mathcal{G}_\gamma^d] \big\}$$
,

$$\sup_{\Gamma \in \mathcal{G}_{\sigma}^{d}} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E}|\widehat{\ell}_{\mathbf{m}_{n}^{\diamond}} - \ell(\beta)|^{2} \lesssim R_{\ell}^{\diamond}[\mathbf{n}; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] = R_{\ell}^{\mathbf{m}_{n}^{\diamond}}[\mathbf{n}; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}].$$

$$\text{with } \mathbf{m}_{\mathbf{n}}^{\diamond} = \underset{\mathbf{m} \geqslant 1}{\arg\min} \big\{ R_{\ell}^{\mathbf{m}}[\mathbf{n}; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] \big\}.$$

Jan Johannes (UCL) 19/28

Minimax-optimality. Under Assumption A1-A2 we have in case of

Minimax-optimality. Under Assumption A1-A2 we have in case of

(p) for
$$p+a\geqslant 2$$
 with $m_n^*\sim n^{1/(2p+2a+1)}$ and $m_n^{\diamondsuit}\sim n^{1/(2p+2a)}$

- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E} \|\widehat{\beta}_{m_n^*}^{(s)} \beta^{(s)}\|^2 \lesssim n^{-2(p-s)/(2p+2a+1)}$.
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E}[\langle \widehat{\beta}_{m_n^*} \beta, X_{n+1} \rangle^2 \mid X_1, \dots] \lesssim n^{-2(p+a)/(2p+2a+1)}$

- (e) with $m_n^* \sim (\log n)^{1/(2a)}$ and $m_n^{\diamond} \sim (\log n)^{1/(2a)}$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E} \|\widehat{\beta}_{m_n^*}^{(s)} \beta^{(s)}\|^2 \lesssim (\log n)^{-(p-s)/a}.$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E}[\langle \widehat{\beta}_{m_n^*} \beta, X_{n+1} \rangle^2 \mid X_1, \dots] \lesssim n^{-1} (\log n)^{1/(2a)}$

Jan Johannes (UCL) 20/28

Minimax-optimality. Under Assumption A1-A2 we have in case of

(p) for
$$p+a\geqslant 2$$
 with $m_n^*\sim n^{1/(2p+2a+1)}$ and $m_n^{\diamondsuit}\sim n^{1/(2p+2a)}$

- $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^{\rho}_{p}} \mathbb{E} \|\widehat{\beta}^{(s)}_{m^{*}_{n}} \beta^{(s)}\|^{2} \lesssim n^{-2(p-s)/(2p+2a+1)}$.
- $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^\rho_p} \mathbb{E}[\langle \widehat{\beta}_{m_n^*} \beta, X_{n+1} \rangle^2 \, | \, X_1, \dots] \lesssim n^{-2(p+a)/(2p+2a+1)}$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} |\widehat{\beta}_{m_n^\circ}(t_0) \beta(t_0)|^2 \lesssim n^{-(2p-1)/(2p+2a)}$.
- (e) with $m_n^* \sim (\log n)^{1/(2a)}$ and $m_n^{\diamond} \sim (\log n)^{1/(2a)}$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} \|\widehat{\beta}_{m_n^*}^{(s)} \beta^{(s)}\|^2 \lesssim (\log n)^{-(p-s)/a}$.
- $\sup_{\Gamma \in \mathcal{G}_n^d} \sup_{\beta \in \mathcal{W}_n^\rho} \mathbb{E}[\langle \widehat{\beta}_{m_n^*} \beta, X_{n+1} \rangle^2 \mid X_1, \dots] \lesssim n^{-1} (\log n)^{1/(2a)}$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} |\widehat{\beta}_{m_n^\diamond}(t_0) \beta(t_0)|^2 \lesssim (\log n)^{-(2p-1)/(2a)}$.

Jan Johannes (UCL) 20/28

Minimax-optimality. Under Assumption A1-A2 we have in case of

(p) for
$$p+a\geqslant 2$$
 with $m_n^*\sim n^{1/(2p+2a+1)}$ and $m_n^{\diamond}\sim n^{1/(2p+2a)}$

- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} \|\widehat{\beta}_{\mathbf{m}_p^*}^{(s)} \beta^{(s)}\|^2 \lesssim n^{-2(p-s)/(2p+2a+1)}$.
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E}[\langle \widehat{\beta}_{\mathbf{m}_n^*} \beta, X_{n+1} \rangle^2 \, | \, X_1, \dots] \lesssim n^{-2(p+a)/(2p+2a+1)}$
- $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^\rho_p} \mathbb{E} |\widehat{\beta}_{\mathbf{m}^{\diamond}_{\mathbf{n}}}(t_0) \beta(t_0)|^2 \lesssim n^{-(2p-1)/(2p+2a)}$.
- (e) with $m_n^* \sim (\log n)^{1/(2a)}$ and $m_n^{\diamond} \sim (\log n)^{1/(2a)}$
- $\sup_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} \|\widehat{\beta}_{\mathbf{m}_n^*}^{(s)} \beta^{(s)}\|^2 \lesssim (\log n)^{-(p-s)/a}$.
- $\sup_{\Gamma \in \mathcal{G}_n^d} \sup_{\beta \in \mathcal{W}_n^\rho} \mathbb{E}[\langle \widehat{\beta}_{\mathbf{m}_n^*} \beta, X_{n+1} \rangle^2 \mid X_1, \dots] \lesssim n^{-1} (\log n)^{1/(2a)}$
- $\sup_{\Gamma \in \mathcal{G}_n^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E} |\widehat{\beta}_{\mathbf{m}_n^o}(t_0) \beta(t_0)|^2 \lesssim (\log n)^{-(2p-1)/(2a)}$.

Jan Johannes (UCL) 20/28

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

Adaptive estimation

$$\widehat{\beta}_{\widehat{\widehat{m}}} := (f)_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \max_{m \leqslant k \leqslant \widehat{M}} \left\{ |\mathcal{L}(\widehat{\beta}_k, \widehat{\beta}_m)|^2 - \ \widehat{\mathrm{pen}}_k \right\}$$

Adaptive estimation

$$\widehat{\beta}_{\widehat{m}} := (f)_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \max_{m \leqslant k \leqslant \widehat{M}} \left\{ |\mathcal{L}(\widehat{\beta}_k, \widehat{\beta}_m)|^2 - |\widehat{\mathrm{pen}}_k| \right\}$$

Lemma

If $(\widehat{pen}_1, \dots, \widehat{pen}_{\widehat{M}})$ is non-decreasing, then for all $1 \leq m \leq \widehat{M}$ we have

$$|\mathcal{L}(\widehat{\beta}_{\widehat{m}},\beta)|^2 \leqslant 7 \, \widehat{\operatorname{pen}}_m + 78 \, \operatorname{bias}_m^2 + 42 \, \max_{m \leqslant k \leqslant \widehat{M}} \left(|\mathcal{L}(\widehat{\beta}_k,\beta_k)|^2 - \frac{1}{6} \, \widehat{\operatorname{pen}}_k \right)_+$$

with $\operatorname{bias}_m = \sup_{k \geq m} |\mathcal{L}(\beta_k, \beta)|, \ m \geq 1.$

21/28

Jan Johannes (UCL)

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

$$\widehat{\beta}_{\widetilde{m}} := (f)^t_{\underline{\widetilde{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \underset{1 \leqslant m \leqslant M}{\arg \min} \, \big\{ \mathsf{Contrast}_m + \, \mathsf{pen}_m \big\},$$

$$\widehat{\beta}_{\widetilde{m}} := (f)^t_{\underline{\widetilde{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \underset{1 \leqslant m \leqslant M}{\arg\min} \, \big\{ \mathsf{Contrast}_m + \, \mathsf{pen}_m \big\},$$

$$\mathsf{Contrast}_m = \sup_{m \le k \le M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

$$\widehat{\beta}_{\widetilde{m}} := (f)^t_{\underline{\widetilde{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \left\{ \mathsf{Contrast}_m + \, \mathtt{pen}_m \right\},$$

$$\mathsf{Contrast}_m = \sup_{m \leq k \leq M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

$$ightharpoons \mathbb{V}\operatorname{ar}(U + \langle \beta - \beta_m, X \rangle) \leqslant \sigma_m^2$$

$$\widehat{\beta}_{\widetilde{m}} := (f)^t_{\underline{\widetilde{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \left\{ \mathsf{Contrast}_m + \, \mathtt{pen}_m \right\},$$

$$\mathsf{Contrast}_m = \sup_{m \leq k \leq M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

$$\widehat{\beta}_{\widetilde{m}} := (f)_{\underline{\widetilde{m}}}^t [\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \big\{ \mathsf{Contrast}_m + \, \mathtt{pen}_m \big\},$$

$$\mathsf{Contrast}_m = \sup_{m \leq k \leq M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_\omega^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

$$\widehat{\beta}_{\widetilde{m}} := (f)_{\underline{\widetilde{m}}}^t [\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \big\{ \mathsf{Contrast}_m + \, \mathtt{pen}_m \big\},$$

$$\mathsf{Contrast}_m = \sup_{m < k \le M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

- $\mathbb{V}\operatorname{ar}(U + \langle \beta \beta_m, X \rangle) \leqslant \sigma_m^2 := 2\left\{ \mathbb{E}Y^2 + [g]_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1}[g]_{\underline{m}} \right\}$
- $\delta_m := m \Delta_m \frac{\log(\Delta_m \vee m + 2)}{\log(m + 2)}, \quad \Delta_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\Gamma]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_{s},$

Jan Johannes (UCL) 22/28

$$\widehat{\beta}_{\widetilde{m}} := (f)_{\underline{\widetilde{m}}}^t [\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widetilde{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \big\{ \mathsf{Contrast}_m + \, \mathtt{pen}_m \big\},$$

$$\mathsf{Contrast}_m = \sup_{m \leq k \leq M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \, \mathrm{pen}_k \right\} \, \mathsf{and} \ \, \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

- $\mathbb{V}\operatorname{ar}(U + \langle \beta \beta_m, X \rangle) \leqslant \sigma_m^2 := 2\{\mathbb{E}Y^2 + [g]_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}}\}$
- $\delta_m := m \Delta_m \frac{\log(\Delta_m \vee m + 2)}{\log(m + 2)}, \quad \Delta_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\Gamma]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_{s},$

Theorem (Comte & JJ (2011)) Under Assumption A1-A5 we have:

 $\sum_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E} \| \widehat{\beta}_{\widetilde{m}} - \beta \|_{\omega}^2 \lesssim \min_{1 \leqslant m \leqslant M^{-}} \left\{ \max \left(\frac{\omega_m}{b_m}, \frac{\overline{\delta_m}}{n} \right) \right\} + \frac{C(\mathcal{G}_{\gamma}^d, \mathcal{F}_{b}^{\rho})}{n}$

Jan Johannes (UCL) 22/28

$$\widehat{\beta}_{\widetilde{m}} := (f)^t_{\underline{\widetilde{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}} [\widehat{g}]_{\underline{\widetilde{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\underline{\widetilde{m}}}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widetilde{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant M} \big\{ \mathsf{Contrast}_m + \, \mathrm{pen}_m \big\},$$

$$\mathsf{Contrast}_m = \sup_{m \leq k \leq M} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \mathrm{pen}_k \right\} \text{ and } \mathrm{pen}_m := c \, \sigma_m^2 \, \delta_m \, n^{-1}$$

- $\mathbb{V}\operatorname{ar}(U + \langle \beta \beta_m, X \rangle) \leqslant \sigma_m^2 := 2 \left\{ \mathbb{E} Y^2 + [g]_{\underline{m}}^t [\Gamma]_{\underline{m}}^{-1} [g]_{\underline{m}} \right\}$
- $\delta_m := m \Delta_m \frac{\log(\Delta_m \vee m + 2)}{\log(m + 2)}, \quad \Delta_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\Gamma]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_{s},$

Theorem (Comte & JJ (2011)) Under Assumption A1-A5 we have:

 $\sum_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E} \| \widehat{\beta}_{\widetilde{m}} - \beta \|_{\omega}^2 \lesssim \min_{1 \leqslant m \leqslant M^{-}} \left\{ \max \left(\frac{\omega_m}{b_m}, \frac{\delta_m}{n} \right) \right\} + \frac{C(\mathcal{G}_{\gamma}^d, \mathcal{F}_{b}^{\rho})}{n}$

Remember: $R_{\omega}^*[n; \mathcal{F}_b^{\rho}, \mathcal{G}_{\gamma}^d] = \min_{1 \leqslant m < \infty} \left\{ \max \left(\frac{\omega_m}{b_m}, \sum_{j=1}^m \frac{\omega_j}{n\gamma_i} \right) \right\}$

$$\widehat{\beta}_{\widehat{\widehat{m}}} := (f)_{\widehat{\underline{\widehat{m}}}}^t [\widehat{\Gamma}]_{\widehat{\underline{\widehat{m}}}}^{-1} [\widehat{g}]_{\widehat{\underline{\widehat{m}}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{\widehat{m}}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_{\omega}^2 - \ \widehat{\mathrm{pen}}_k \right\} \ \mathsf{and} \ \ \widehat{\mathrm{pen}}_m := 14c \ \widehat{\sigma}_m^2 \ \widehat{\delta}_m \ n^{-1}$$

$$\widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \left\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \right\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_\omega^2 - \ \widehat{\mathrm{pen}}_k \right\} \ \mathsf{and} \ \ \widehat{\mathrm{pen}}_m := 14c \ \widehat{\sigma}_m^2 \ \widehat{\delta}_m \ n^{-1}$$

$$\qquad \qquad \quad \bullet \ \, \sigma_m^2 := 2 \big\{ \mathbb{E} Y^2 + [g]_m^t [\Gamma]_m^{-1} [g]_{\underline{m}} \big\}$$

$$\widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \left\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \right\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \|\widehat{\beta}_k - \widehat{\beta}_m\|_\omega^2 - \ \widehat{\mathrm{pen}}_k \right\} \ \mathsf{and} \ \ \widehat{\mathrm{pen}}_m := 14c \ \widehat{\sigma}_m^2 \ \widehat{\delta}_m \ n^{-1}$$

$$ightharpoonup \widehat{\sigma}_{m}^{2} := 2 \left\{ n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{m}^{t} [\widehat{\Gamma}]_{m}^{-1} [\widehat{g}]_{\underline{m}} \right\}$$

$$\widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \left\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \right\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \| \widehat{\beta}_k - \widehat{\beta}_m \|_\omega^2 - \, \widehat{\mathrm{pen}}_k \right\} \text{ and } \, \widehat{\mathrm{pen}}_m := 14c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, n^{-1}$$

- $\widehat{\sigma}_{m}^{2} := 2 \left\{ n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \right\}$
- $\bullet \ \widehat{\delta}_m := m \widehat{\Delta}_m \frac{\log(\widehat{\Delta}_m \vee m + 2)}{\log(m + 2)}, \quad \widehat{\Delta}_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\widehat{\Gamma}]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_s,$

23/28

$$\widehat{\beta}_{\widehat{m}} := (f)_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widehat{m} := \operatorname*{arg min}_{1 \leqslant m \leqslant \widehat{M}} \left\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \right\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \| \widehat{\beta}_k - \widehat{\beta}_m \|_\omega^2 - \, \widehat{\mathrm{pen}}_k \right\} \, \mathsf{and} \ \, \widehat{\mathrm{pen}}_m := 14c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \mathit{n}^{-1}$$

- $\widehat{\sigma}_{m}^{2} := 2 \left\{ n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \right\}$
- $\bullet \ \widehat{\delta}_m := m \widehat{\Delta}_m \frac{\log(\widehat{\Delta}_m \vee m + 2)}{\log(m + 2)}, \quad \widehat{\Delta}_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\widehat{\Gamma}]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_{s},$
- $\begin{array}{l} \blacktriangleright \ \widehat{M} := \mathop{\arg\min}_{2 \leqslant m \leqslant M^{\omega}} \left\{ m \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{s} \| [\nabla_{\omega}]_{\underline{m}} \|_{s} > \frac{n}{\log n} \right\} 1 \end{array}$

$$\widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\left\{ \|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_{\mathfrak{s}} \leqslant n \right\}} \text{ with } \widehat{m} := \operatorname*{arg min}_{1 \leqslant m \leqslant \widehat{M}} \left\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \right\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \| \widehat{\beta}_k - \widehat{\beta}_m \|_\omega^2 - \ \widehat{\mathrm{pen}}_k \right\} \ \mathsf{and} \ \ \widehat{\mathrm{pen}}_m := 14c \ \widehat{\sigma}_m^2 \ \widehat{\delta}_m \ \mathit{n}^{-1}$$

- $\hat{\sigma}_{m}^{2} := 2 \left\{ n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \right\}$
- $\bullet \ \widehat{\delta}_m := m \widehat{\Delta}_m \frac{\log(\widehat{\Delta}_m \vee m + 2)}{\log(m + 2)}, \quad \widehat{\Delta}_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\widehat{\Gamma}]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_{s},$
- $\blacktriangleright \ \widehat{M} := \operatorname*{arg\ min}_{2 \leqslant m \leqslant M^{\omega}} \left\{ m \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{s} \| [\nabla_{\omega}]_{\underline{m}} \|_{s} > \tfrac{n}{\log n} \right\} 1$

Theorem (Comte & JJ (2011)) Under Assumption A1-A5 we have:

 $\sum_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{F}_{p}^b} \mathbb{E} \| \widehat{\beta}_{\widehat{m}} - \beta \|_{\omega}^2 \lesssim \min_{1 \leqslant m \leqslant M^-} \bigl\{ \max\bigl(\frac{\omega_m}{b_m}, \frac{\delta_m}{n}\bigr) \bigr\} + \frac{C(\mathcal{G}_{\gamma}^d, \mathcal{F}_{p}^o)}{n}$

$$\widehat{\beta}_{\widehat{m}} := (f)_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbbm{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ \| \widehat{\beta}_k - \widehat{\beta}_m \|_{\omega}^2 - \ \widehat{\mathrm{pen}}_k \right\} \ \mathsf{and} \ \ \widehat{\mathrm{pen}}_m := 14c \ \widehat{\sigma}_m^2 \ \widehat{\delta}_m \ \mathsf{n}^{-1}$$

- $\widehat{\sigma}_{m}^{2} := 2 \left\{ n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}} \right\}$
- $\bullet \ \widehat{\delta}_m := m \widehat{\Delta}_m \frac{\log(\widehat{\Delta}_m \vee m + 2)}{\log(m + 2)}, \quad \widehat{\Delta}_m := \max_{1 \leqslant k \leqslant m} \| [\nabla_{\omega}]_{\underline{k}}^{1/2} [\widehat{\Gamma}]_{\underline{k}}^{-1} [\nabla_{\omega}]_{\underline{k}}^{1/2} \|_s,$
- $\blacktriangleright \ \widehat{M} := \underset{2 \leqslant m \leqslant M^{\omega}}{\arg \min} \left\{ m \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{s} \| [\nabla_{\omega}]_{\underline{m}} \|_{s} > \frac{n}{\log n} \right\} 1$

Theorem (Comte & JJ (2011)) Under Assumption A1-A5 we have:

 $\sum_{\Gamma \in \mathcal{G}_{\gamma}^d} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E} \| \widehat{\beta}_{\widehat{m}} - \beta \|_{\omega}^2 \lesssim \min_{1 \leqslant m \leqslant M^{-}} \left\{ \max \left(\frac{\omega_m}{b_m}, \frac{\delta_m}{n} \right) \right\} + \frac{\mathcal{C}(\mathcal{G}_{\gamma}^d, \mathcal{F}_{b}^{\rho})}{n}$

 $\text{Remember: } R_{\omega}^*[n; \mathcal{F}_b^{\rho}, \mathcal{G}_{\gamma}^d] = \min_{1 \leqslant m < \infty} \left\{ \max \left(\frac{\omega_m}{b_m}, \; \sum_{j=1}^m \frac{\omega_j}{n \gamma_i} \right) \right\}$

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

$$\begin{split} \widehat{\beta}_{\widehat{m}} := (f)_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widehat{m} := \underset{1 \leqslant m \leqslant \widehat{M}}{\arg\min} \, \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\}, \\ \mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \Big\{ \|\widehat{\beta}_k^{(s)} - \widehat{\beta}_m^{(s)}\|^2 - \, \widehat{\mathrm{pen}}_k \Big\}. \end{split}$$

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

$$\widehat{\beta}_{\widehat{m}} := (f)^t_{\underline{\widehat{m}}} [\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]^{-1}_{\underline{\widehat{m}}}\|_{\mathfrak{s}} \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \Big\{ \|\widehat{\beta}_k^{(\mathbf{s})} - \widehat{\beta}_m^{(\mathbf{s})}\|^2 - \widehat{\mathrm{pen}}_k \Big\}.$$

Minimax-optimality. Under Assumption A1-A2 we have in case of

- (p) for $p + a \geqslant 2$
 - global: $\sup_{\Gamma \in \mathcal{G}_{\gamma}^{d}} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E} \|\widehat{\beta}_{\widehat{m}}^{(s)} \beta^{(s)}\|^{2} \lesssim n^{-2(p-s)/(2p+2a+1)}.$
- (e)
 - global: $\sup_{\Gamma \in \mathcal{G}^d_{\gamma}} \sup_{\beta \in \mathcal{W}^p_{\rho}} \mathbb{E} \|\widehat{\beta}^{(s)}_{\widehat{m}} \beta^{(s)}\|^2 \lesssim (\log n)^{-(p-s)/a}.$

Outline

- Methodology
- Background and model assumptions
- Minimax theory
 - Measure of performance
 - Lower bound: global and local risk
 - Minimax-optimal estimation
- Adaptive estimation combining model selection and Lepski's method
 - Adaptive global estimation
 - Adaptive local estimation

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\underline{\widehat{m}}}^{\underline{t}} [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \le k \le \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m < k < \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

$$\widehat{\sigma}_{m}^{2} := 2\{n^{-1}\sum_{i=1}^{n}Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t}[\widehat{\Gamma}]_{\underline{m}}^{-1}[\widehat{g}]_{\underline{m}}\}$$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m < k < \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

$$\widehat{\sigma}_{m}^{2} := 2\{n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}\}$$

$$\blacktriangleright \ \widehat{\delta}_m := \max_{1 \leqslant k \leqslant m} [\ell]_{\underline{k}}^t [\widehat{\Gamma}]_{\underline{k}}^{-1} [\ell]_{\underline{k}},$$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leq k \leq \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

- $\widehat{\sigma}_{m}^{2} := 2\{n^{-1} \sum_{i=1}^{n} Y_{i}^{2} + [\widehat{g}]_{\underline{m}}^{t} [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}\}$
- $\blacktriangleright \ \widehat{\delta}_m := \max_{1 \leqslant k \leqslant m} [\ell]_{\underline{k}}^t [\widehat{\Gamma}]_{\underline{k}}^{-1} [\ell]_{\underline{k}},$
- $\begin{array}{l} \blacktriangleright \ \widehat{M} := \underset{2 \leqslant m \leqslant M^{\ell}}{\arg \min} \left\{ \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{s} \, [\ell]_{\underline{m}}^{t} [\ell]_{\underline{m}} > \frac{n}{1 + \log n} \right\} 1 \end{array}$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leq k \leq \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

- $ightharpoonup \widehat{\sigma}_m^2 := 2\{n^{-1} \sum_{i=1}^n Y_i^2 + [\widehat{g}]_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}\}$
- $\blacktriangleright \ \widehat{\delta}_m := \max_{1 \leqslant k \leqslant m} [\ell]_{\underline{k}}^t [\widehat{\Gamma}]_{\underline{k}}^{-1} [\ell]_{\underline{k}},$
- $\begin{array}{l} \blacktriangleright \ \widehat{M} := \underset{2 \leqslant m \leqslant M^{\ell}}{\arg \min} \left\{ \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{\mathfrak{s}} \, [\ell]_{\underline{m}}^{t} [\ell]_{\underline{m}} > \frac{n}{1 + \log n} \right\} 1 \end{array}$

Theorem (JJ & Schenk (2011)) Under Assumption A1-A5 we have:

 $\sup_{\Gamma \in \mathcal{G}_{\alpha}^{d}} \sup_{\beta \in \mathcal{F}_{\mu}^{\ell}} \mathbb{E}[\widehat{\ell}_{\widehat{m}} - \ell(\beta)]_{\omega}^{2} \lesssim R_{\ell}^{\diamond}[\frac{n}{1 + \log n}; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] + \frac{C(\mathcal{G}_{\gamma}^{d}, \mathcal{F}_{b}^{\rho})}{n}$

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\widehat{\underline{m}}}^t [\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1} [\widehat{g}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\widehat{\underline{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m < k < \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \widehat{\mathrm{pen}}_k \right\} \text{ and } \widehat{\mathrm{pen}}_m := 7c \, \widehat{\sigma}_m^2 \, \widehat{\delta}_m \, \frac{1 + \log n}{n}$$

- $ightharpoonup \widehat{\sigma}_m^2 := 2\{n^{-1} \sum_{i=1}^n Y_i^2 + [\widehat{g}]_{\underline{m}}^t [\widehat{\Gamma}]_{\underline{m}}^{-1} [\widehat{g}]_{\underline{m}}\}$
- $\blacktriangleright \ \widehat{\delta}_m := \max_{1 \leq k \leq m} [\ell]_{\underline{k}}^{\underline{t}} [\widehat{\Gamma}]_{\underline{k}}^{-1} [\ell]_{\underline{k}},$
- $\begin{array}{l} \blacktriangleright \ \widehat{M} := \underset{2 \leqslant m \leqslant M^{\ell}}{\arg \min} \left\{ \| [\widehat{\Gamma}]_{\underline{m}}^{-1} \|_{\mathfrak{s}} \, [\ell]_{\underline{m}}^{t} [\ell]_{\underline{m}} > \frac{n}{1 + \log n} \right\} 1 \end{array}$

Theorem (JJ & Schenk (2011)) Under Assumption A1-A5 we have:

$$\sup_{\Gamma \in \mathcal{G}_{\gamma}^{d}} \sup_{\beta \in \mathcal{F}_{b}^{\rho}} \mathbb{E}[\widehat{\ell}_{\widehat{m}} - \ell(\beta)]_{\omega}^{2} \lesssim R_{\ell}^{\diamond}[\frac{n}{1 + \log n}; \mathcal{F}_{b}^{\rho}, \mathcal{G}_{\gamma}^{d}] + \frac{C(\mathcal{G}_{\gamma}^{d}, \mathcal{F}_{b}^{\rho})}{n}$$

Remember: $R_{\ell}^{\diamond}[n; \mathcal{F}_{h}^{\rho}, \mathcal{G}_{\gamma}^{d}]$ is the minimax-rate.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^{ρ} an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^{ρ} an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

$$\begin{split} \widehat{\ell}_{\widehat{m}} &:= [\ell]_{\widehat{\underline{m}}}^{-1} [\widehat{\boldsymbol{f}}]_{\widehat{\underline{m}}}^{-1} [\widehat{\boldsymbol{g}}]_{\widehat{\underline{m}}} \, \mathbb{1}_{\{\|[\widehat{\boldsymbol{\Gamma}}]_{\widehat{\underline{m}}}^{-1}\|_{\boldsymbol{s}} \leqslant \boldsymbol{n}\}} \text{ with } \widehat{\boldsymbol{m}} := \underset{1 \leqslant m \leqslant \widehat{\boldsymbol{M}}}{\arg \min} \, \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\}, \\ & \mathsf{Contrast}_m := \underset{m \leqslant k \leqslant \widehat{\boldsymbol{M}}}{\sup} \, \big\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \, \widehat{\mathrm{pen}}_k \big\} \end{split}$$

Let $\{f_j\}$ be the trigonometric basis in $L^2[0,1]$ and \mathcal{W}_p^ρ an ellipsoid in the Sobolev space of p-times differentiable periodic functions.

$$\widehat{\ell}_{\widehat{m}} := [\ell]_{\underline{\widehat{m}}}^t [\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1} [\widehat{g}]_{\underline{\widehat{m}}} \, \mathbb{1}_{\{\|[\widehat{\Gamma}]_{\underline{\widehat{m}}}^{-1}\|_s \leqslant n\}} \text{ with } \widehat{m} := \operatorname*{arg \ min}_{1 \leqslant m \leqslant \widehat{M}} \big\{ \mathsf{Contrast}_m + \, \widehat{\mathrm{pen}}_m \big\},$$

$$\mathsf{Contrast}_m := \sup_{m \leqslant k \leqslant \widehat{M}} \left\{ |\widehat{\ell}_k - \widehat{\ell}_m|^2 - \ \widehat{\mathrm{pen}}_k \right\}$$

Minimax-optimality. Under Assumption A1-A2 we have in case of

(p) for
$$p + a \geqslant 2$$

• local: $\sup_{\Gamma \in \mathcal{G}_{p}^{d}} \sup_{\beta \in \mathcal{W}_{p}^{\rho}} \mathbb{E}|\widehat{\beta}_{\widehat{m}}(t_{0}) - \beta(t_{0})|^{2} \lesssim \left(\frac{n}{\log n}\right)^{-(2p-1)/(2p+2a)}$

(e)

• local: $\sup_{\Gamma \in \mathcal{G}_n^d} \sup_{\beta \in \mathcal{W}_p^\rho} \mathbb{E}|\widehat{\beta}_{\widehat{m}}(t_0) - \beta(t_0)|^2 \lesssim (\log n)^{-(2p-1)/(2a)}.$

In functional linear regression: $Y = \langle \beta, X \rangle + U$ and $\mathbb{E}(UX) = 0$

► a lower bound is derived globally and locally considering (abstract) smoothness conditions and general link conditions;

In functional linear regression: $Y = \langle \beta, X \rangle + U$ and $\mathbb{E}(UX) = 0$

- a lower bound is derived globally and locally considering (abstract) smoothness conditions and general link conditions;
- \blacktriangleright an estimator of β is proposed and its minimax-optimality is shown
 - requiring an optimal choice of a dimension parameter

In functional linear regression: $Y = \langle \beta, X \rangle + U$ and $\mathbb{E}(UX) = 0$

- a lower bound is derived globally and locally considering (abstract) smoothness conditions and general link conditions;
- \blacktriangleright an estimator of β is proposed and its minimax-optimality is shown
 - requiring an optimal choice of a dimension parameter
- \blacktriangleright a minimax-optimal data-driven estimator of β is constructed
 - combining model selection and Lepski's method;

In functional linear regression: $Y = \langle \beta, X \rangle + U$ and $\mathbb{E}(UX) = 0$

- ▶ a lower bound is derived globally and locally considering (abstract) smoothness conditions and general link conditions;
- \blacktriangleright an estimator of β is proposed and its minimax-optimality is shown
 - requiring an optimal choice of a dimension parameter
- \blacktriangleright a minimax-optimal data-driven estimator of β is constructed
 - combining model selection and Lepski's method;
- ▶ the results are illustrated using classical smoothness assumptions.

In functional linear regression: $Y = \langle \beta, X \rangle + U$ and $\mathbb{E}(UX) = 0$

- a lower bound is derived globally and locally considering (abstract) smoothness conditions and general link conditions;
- lacktriangle an estimator of eta is proposed and its minimax-optimality is shown
 - requiring an optimal choice of a dimension parameter
- \blacktriangleright a minimax-optimal data-driven estimator of β is constructed
 - combining model selection and Lepski's method;
- ▶ the results are illustrated using classical smoothness assumptions.

Extensions:

- \Diamond Sparse irregular repeated noisy measurements of $X(\cdot)$;
- \Diamond Structured or unstructured sparse representation of $\beta(\cdot)$;

♦ Observational dependence.

References

Cardot & Johannes (2010)

Thresholding projection estimators in functional linear models.

Journal of Multivariate Analysis, 101:395-408

Johannes & Schenk (2012)

On rate optimal local estimation in functional linear regression.

Discussion paper, Université catholique de Louvain (under revision).

Comte & Johannes (2012)

Adaptive functional linear regression.

To appear in The Annals of Statistics.

Johannes & Schenk (2012)

Adaptive estimation of linear functionals in functional linear models.

To appear in Mathematical Methods of Statistics.