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Figure 1: Horizontal component of the magnetic field measured in one
minute resolution at Honolulu magnetic observatory from 1/1/2001
00:00 UT to 1/7/2001 24:00 UT. 1440 measurements per day.
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Figure 2: S&P100 market index plotted for 10 consecutive trading days.
405 minutely measurements per day.



Functional time series

The previous examples can be casted in the framework of
functional time series.

Every observation Xn = {Xn(t), t ∈ [0, 1]} is a curve.

Usually the intraday process {Xn(t), t ∈ [0, 1]} is not stationary,
while the process {Xn, n ≥ 1} is stationary.

Objective of this talk: Discuss the regression problem

Yn = Ψ(Xn) + εn

when the {Xn} process forms a functional time series.



Special case: the FAR(1) model

One of the most widely emloyed time series models is the
functional AR (FAR) model, studied intensively by Bosq (2000).

Xn+1(t) =

∫ 1

0
ψ(t, s)Xn(s)ds + εn+1(t).

More conveniently

Xn+1 = Ψ(Xn) + εn+1.

To forecast Xn+1 we may set

X̂n+1 = Ψ̂(Xn),

and thus we need accurate estimator for Ψ.



Setup

We consider estimation of the operator Ψ when

Yn = Ψ(Xn) + εn

for fully observed data. Let us collect our main assumptions.

I Ψ : H1 → H2 is a bounded linear operator.

I {εk} and {Xk} are zero mean variables and are assumed to be
L4–m–approximable (see below).

I In addition {εk} is Hilbertian white noise. For any k ≥ 1 we
have Xk ⊥ εk .



Weak dependence

A random sequence {Xn}n≥1 with values in H is called
Lp–m–approximable if it can be represented as

Xn = f (δn, δn−1, δn−2, ...)

where the δi are iid elements taking values in a measurable space S
and f is a measurable function f : S∞ → H. Moreover if δ′i are
independent copies of δi defined on the same probability space,
then for

X
(m)
n = f (δn, δn−1, δn−2, ..., δn−m+1, δ

′
n−m, δ

′
n−m−1, ...)

we have

∞∑
m=1

(E‖Xm − X
(m)
m ‖p)1/p <∞.



Remarks

I Lp–m–approximability implicitely assumes stationarity.

I Trivial example: iid sequences.

I Setup can be shown to cover the FAR(1).

I Setup also covers many linear and non-linear processes.

I One can show that

√
n‖X̄ − µ‖H1 = OP(1).

Thus the mean can be accurately removed in a preprocessing
step and that EXk = 0 is not a stringent assumption. Similar
argument works for intercept.



Estimation of Ψ

We define the covariance operator

C = E [X1 ⊗ X1] (=⇒ C (x) = E [〈X1, x〉X1] )

and the cross-covariance operator

∆ = E [X1 ⊗ Y1] (=⇒ ∆(x) = E [〈X1, x〉Y1] ).

By framework assumptions both of them are Hilbert-Schmidt
operators.

Let (λi , vi )i≥1 be the eigenvalues and corresponding eigenfunctions
of the operator C , such that λ1 ≥ λ2 ≥ .... The eigenfunctions are
orthonormal and those belonging to a non-zero eigenvalue form an
orthonormal basis of C (H1).



Estimation of Ψ

Using linearity of Ψ and the requirement Xk ⊥ εk we obtain

∆(vj) = E 〈X1, vj〉Y1

= E 〈X1, vj〉Ψ(X1) + E 〈X1, vj〉ε1

= EΨ(〈X1, vj〉X1)

= Ψ(C (vj))

= λjΨ(vj).

Then for any x ∈ H1 the derived equation leads us formally to

Ψ(x) = Ψ

( ∞∑
j=1

〈vj , x〉vj

)
=
∞∑
j=1

∆(vj)

λj
〈vj , x〉. (1)



Estimation of Ψ

We will estimate ∆, vj and λj from our sample

X1, . . . ,Xn,Y1, . . . ,Yn

and substitute the estimators into formula (1).

The estimated eigenelements are obtained from empirical
covariance operator

Ĉn =
1

n

n∑
k=1

Xk ⊗ Xk .

In a similar straightforward manner we set

∆̂n =
1

n

n∑
k=1

Xk ⊗ Yk .



Estimation of Ψ

Apparently, from the finite sample we cannot estimate the entire
sequence (λj , vj), rather we have to work with a truncated version.
This leads to

Ψ̂K (x) =
K∑
j=1

∆̂(v̂j)

λ̂j
〈v̂j , x〉, (2)

where the choice of K = Kn is crucial.

I Kn has to grow with the sample size to infinity for consistency.

I Since λj → 0 it will be a delicate issue to control the behavior
of 1

λ̂j
.



A practical possibility is to use cross-validation.

For theoretical purposes it may be interesting to have a choice
K = Kn →∞ such that Ψ̂K → Ψ.

This has been established in special cases (e.g. Bosq for FAR(1))
but requires delicate assumptions:

I Ψ is Hilbert-Schmidt (excludes Ψ = Id).

I Specific decay of eigenvalues and gaps

λj and αj = min{λj − λj+1, λj−1 − λj}

which are impossible to check.



A data-driven selection of K .

Theorem: If we impose the following:

(A): Ψ is Hilbert-Schmidt and λj are distinct.

(B): Let Kn = min(Bn,En,mn) where

Bn = arg max{j ≥ 1| 1

λ̂j
≤ mn}

and

En = arg max{k ≥ 1| max
1≤j≤k

1

α̂j
≤ mn}

for some sequence {mn} such m6
n = o(n).

Then ‖Ψ̂−Ψ‖ → 0 in probability.



A data-driven selection of K .

The technical Assumption (A) appears still unsatisfactory.
Unfortunately it cannot be completely avoided.

Assume e.g. that

Ψ = Id =
∑
k≥1

vk ⊗ vk .

Even if we perfectly estimate the first K terms of Ψ by

Ψ̂K =
K∑

k=1

vk ⊗ vk ,

we have that
‖Ψ− Ψ̂K‖ = 1.



A data-driven selection of K .

A way to overcome such difficulties it to argue that in practice we
will be satisfied if the estimator Ψ̂ is such that ‖Ψ(X )− Ψ̂(X )‖ is

small if X
d
= X1.

Theorem: We define the same estimator Ψ̂ as before with
Kn = arg max{j ≥ 1| λ̂1

λ̂j
≤ mn}, where mn = o(

√
n). Then

‖Ψ(X )− Ψ̂(X )‖ → 0,

in probability.



Simuation

Let H1 = H2 = span{vj : 0 ≤ j ≤ 34}, where vk(t) are the first 35
elements of a Fourier basis on [0, 1].

We work with Gaussian curves Xi (t) by setting

Xi (t) =
35∑
j=1

A
(j)
i vj−1(t), (3)

where (A
(1)
i ,A

(2)
i , . . . ,A

(35)
i )′ are independent Gaussian random

vectors with mean zero and covariance Σ.

We test three setups

I Λ1 : (1, e−1/5, e−2/5, . . . , e−35/5) [fast decay],

I Λ2 : (1, 34
35 , . . . ,

1
35 ) [slow decay],

I Λ3 : (1, 1, . . . , 1) [no decay].



Simuation

The noise {εk} is also assumed to be of the form (3) with

coefficients {A(j)
i , i , j ≥ 0} i.i.d. N (0, 1).

Finally we used the following 3 operators:

I Ψ1 identity,

I Ψ2 = Γ1 + Γ2, such that Γ1 : vi 7→ 2
3vπi and Γ2 : vi 7→ 1

3vπ′
i
,

where πi = 1 + (i + 4 mod 35) and π′i = 1 + (i mod 35),

I Ψ3(x) =
∑35

i=1

∑35
j=1 ψij〈x , vi 〉vj , where the coefficients ψij

have been generated as i.i.d. standard normal random
variables (once generated, they were fixed for the entire
simulation), normalized such that ‖Ψ3‖L12 = 1.



Simulation

As a performance measure for our procedure we

NMSE =

∑n
k=1 ‖Ψ(Xk)− Ψ̂(Xk)‖2∑n

k=1 ‖Ψ(Xk)‖2
.

We chose mn =
√
n with sample sizes n = 10× 2`, ` = 0, . . . , 11.



Simulation

n KOPT
n NMSE K 1

n NMSE K 0.5
n NMSE K 0.1

n NMSE

10 1 3.26 2 3.50 1 3.26 1 3.26
20 1 1.38 3 2.59 2 1.88 1 1.38
40 1 1.14 4 1.73 3 1.29 1 1.14
80 3 0.77 6 1.58 4 1.05 1 0.80

160 5 0.48 6 0.62 5 0.48 1 0.73
320 7 0.31 7 0.31 6 0.36 2 0.57
640 8 0.18 9 0.19 7 0.19 3 0.33

1280 11 0.11 9 0.11 8 0.12 4 0.25
2560 11 0.06 10 0.07 9 0.08 5 0.17
5120 15 0.03 11 0.04 9 0.05 6 0.10

10240 17 0.02 12 0.02 10 0.03 6 0.10
20480 17 0.01 13 0.01 11 0.02 7 0.06

Table 1: Ψ1, Λ1



Simulation

n KOPT
n NMSE K 1

n NMSE K 0.5
n NMSE K 0.1

n NMSE

10 1 1.01 8 2 6 1.25 1 1.01
20 4 0.96 12 1.85 9 1.46 1 1.01
40 8 0.88 18 1.42 13 1.07 1 0.97
80 12 0.68 20 0.93 16 0.79 3 0.85

160 19 0.45 24 0.52 20 0.51 5 0.75
320 20 0.25 27 0.30 23 0.27 9 0.50
640 25 0.14 28 0.14 25 0.14 13 0.33

1280 29 0.07 30 0.08 27 0.08 17 0.19
2560 30 0.03 31 0.03 28 0.04 20 0.11
5120 35 0.02 31 0.02 30 0.02 23 0.06

10240 35 0.01 32 0.01 31 0.01 24 0.04
20480 34 0 33 0.01 31 0.01 26 0.02

Table 2: Ψ1, Λ2



Simulation

n KOPT
n NMSE K 1

n NMSE K 0.5
n NMSE K 0.1

n NMSE

10 3 0.95 9 1.16 9 1.16 4 0.98
20 7 0.90 18 1.39 16 1.03 5 0.93
40 15 0.79 26 1.14 23 1 8 0.86
80 28 0.58 35 0.88 32 0.62 14 0.71

160 34 0.28 35 0.30 35 0.30 21 0.48
320 35 0.12 35 0.12 35 0.12 33 0.16
640 35 0.06 35 0.06 35 0.06 35 0.06

1280 35 0.03 35 0.03 35 0.03 35 0.03
2560 35 0.01 35 0.01 35 0.01 35 0.01
5120 35 0.01 35 0.01 35 0.01 35 0.01

10240 35 0 35 0 35 0 35 0
20480 35 0 35 0 35 0 35 0

Table 3: Ψ1, Λ3
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