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Outline of talk

® [he problem: analysis of functional data with phylogenetic
dependence

® |deas for theoretical models

e Constructing a phylogenetic Gaussian process
e Properties of PGP models

e A study on simulated data

e [f time allows - future directions



Functional data over time
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Processes over time and space:
guantitative genetics and kriging
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Modeling Approach for Adaptive
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164(6), 683-695 (2004)



Processes over time, space and phylogeny

Have a random
signal at each point
in the phylogeny
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Statistical model - design specification

e Borrow strength from quantitative genetics: univariate
models on phylogenies eg. BM, OU; extend to functional
data

e Borrow strength from machine learning and kriging:
flexible, tractable GP methods for Bayesian functional/
surface regression; extend to phylogenies

e Good practical performance when used for inference



(Gaussian process regression - in one slide

A Gaussian process is a collection of random
variables, any finite number of which have a
joint Gaussian distribution.

Characterised by its covariance function o, typ-
ically depending on a vector 6 of parameters.
So we can prove basic results in this framework
without functional analysis

Prior is f(L) ~N(0,0(L, L,0))

GPs are partially Posterior is
observed

FM)|f(L) ~ N(A, B)

where

A = o(M,L,0)o(L,L,0) f(L),
o(M,M,0) —o(M,L,0)o(L,L,0) " ta(M,L,0)7T
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Phylogenetic Gaussian Process (Jones-M., 2011)

To obtain a unique phylogenetic covariance
function >4 we make two time-domain as-
sumptions:

Assumption 1 Conditional on their common
ancestors in the phylogenetic tree T, any two
signals are statistically independent.

Assumption 2 The statistical relationship be-
tween a signal and any of its descendants in T T
(the 'marginal process'’)is independent of the

topology of T.



Properties of phylogenetic covariance functions

1. If the marginal covariance function 2 is
space-time separable so that

> ((x1,t1),(z2,t2)) = K(z1,22)k(t1,12)

then the phylogenetic covariance function >
IS also space-time separable, i.e.

>1((z1,t1), (22,t2)) = K(x1,22)kp(t1,t2)

2. If k£ is Markovian in time, we have the simple
expression

kr(t1,to) = k(t1,t10)k(t1o,t10)  Th(to, t12)

where t1-5 is the most recent common ancestor
of t1 and to and tq, is its depth in T.



Properties (cont.)

3. If k is isotropic so that k(¢1,t») is a func-
tion of |t; — to| only, it does not necessarily
follow that kp(tq,to) is isotropic (meaning a
function of the patristic distance between tq
and to only). In fact, ky is only isotropic when
k I1s the Ornstein-Uhlenbeck covariance.

4. Let Y be a PGP with separable covariance
function >p. Under weak conditions on K,
there exist deterministic functions ¢; : § -+ R
and univariate PGPs X;, for ¢+ = 1...n, such
that the Gaussian process given by

Countable

PGPs

n
representation for f(x,t) = Z o; () X;(t)
=il

has the same distribution as Y.




Generating synthetic data (Hadijipantelis et al. 2012)

1. Generated a 128-tip phylogentic tree T and
three fixed spatial basis functions ¢

2. Three independent univariate PGPs used to e
. . . . === T AN\
generate weights for mixing, with covariance

Kip(t1,t2) = Elwi,, wi,] (1)

: —dp(tq,t :
— (O-f)Qexp( T(Az'l 2)) : (O‘n)25t1,t2

. ; ; ; Generate a randomly
G A n mixed signal at each
1 45 17.9 0.45 tree node

2 0 NA 1

3 3.0 8.95 0.45




Synthetic data (cont.)

3. Each node in the tree t € T thus had an
associated vector wy = (wtthth) of weights
for the basis functions. These produced a sin-
gle function-valued trait f; at each node:

fo = wi ¢ (2)

where ¢ is the 3 x 1024 matrix having each ¢;
as its rows. The 128 curves at tips of T were
taken as inputs to our regression analysis, and
the 127 curves at internal nodes of T were used Generate a randomly

for validation of the method. mixed signal at each
tree node




Reversing the CLT: ICA
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Dimension reduction, source separation:
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Validation: ancestor, parameter estimation
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Conclusion

We have developed Phylogenetic Gaussian Process models, usable as priors
for Bayesian functional inference in the presence of evolutionary dependence
between functional data, and tested the performance of inference methods
using IPCA with synthetic data.

Further detail:

Hadjipantelis, P.Z., Jones, N.S., Moriarty, J, Springate, D, Knight, C.G. Ancestral
Inference from Functional Data: Statistical Methods and Numerical Examples
arxiv:1208.0628

Nick S. Jones, John Moriarty
Evolutionary Inference for Function-valued Traits: Gaussian Process Regression

on Phylogenies
arxiv:1004.4668v3



Future work:
big biological data, 'known' phylogeny

Bacteria Independant Components
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Future work:
time warping

Question: How far does GP regression model phase variation in signals?

Toy model: Consider a space-time GP Z(t,x) (¢t € [0,T],x € [0,1]). Apply a
‘time warping’ function to relabel the domain of each signal Z;:

(t,x) > (t, F(t, 7). (0.3)

[f Z is stationary then the compound process Y (¢, x) := Z(t, F'(t,x)) is a GP
and so we can still do GP regression! Variation in amplitude and phase are
both considered to carry evolutionary signal, and are modelled jointly (NB not

individually identifiable).



Future work:
time warping (2)

Example result: Choose this covariance function for Z:

oz((s,),(t,y)) = ¢(s,t)p(z, y) (0.4)
where ¢(a, b) := exp ( (a;b)2), and model F' as a GP with covariance function
or. Then

oy((s,2), (t,y) = ¢(s,1)0 (2,y), (0.5)
where ¢%(x,y) = ﬁ exp ( 2(?11%2)), where

C = Var(F(s,z)— F(t,y)) (0.6)
= op(s, ) + op(t,y) — 20F((s,2), (t,y)) (0.7)

Conclusion: toy model implies a covariance tunction with a specific kind of non-
separability—the spatial (z,y) dispersion parameter 2(1 + C') depends on the
time separation |s — t|.
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Biological data objects are often high-dimensional and
dependent because of phylogeny
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