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0 Introduction
@ The statistical problem
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Introduction The framework

@ The observations: independent copies of
(U, X,Z) € Hq x Ha x R
Typically

@ #Hi =Rand H, = L2[0,1]
e orHi=Ho = L2[0,1]
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Introduction The framework

@ The observations: independent copies of
(U, X,Z) € Hq x Ha x R
Typically
@ #Hi =Rand H, = L2[0,1]
Q orHy =Ho = L2[0,1]
@ The variable U could be observed or estimated from some model
@ The problem: test
Hy: E(U|X,Z2)=0 as.
against the nonparametric alternative

Hy: PIE(U|X,Z)=0] <1
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Introduction The framework

Examples: testing the non-effect

@ Independent samples of U, X and Z are observed

e Scalar response U (functional covariate X, vector covariate Z)

e Functional response U (functional covariate X, vector covariate 2)
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Introduction The framework

Testing parametric functional regression models (1/2)

@ Functional quadratic regression
e samples of Y € R and X € L?[0, 1] are observed

@ For some unknown ¢ € R and by € L2[0,1], b, € L2([0,1] x [0, 1])

Y:c+/01b1(t) dt+/ / bo(t, $)X(£)X(s)dtds + U

@ The functional quadratic model is correct iff

E(U|X)=0 as.
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Introduction The framework

Testing parametric functional regression models (2/2)

@ Functional generalized linear models
e samples of Y € R, X € L2[0,1] and Z € R are observed

@ For some given g(-) and unknown ¢ € R, v € RX and b € L?[0, 1]
Y=g(co+2Z'v+(bX))+U

where

(b, X) = /0 " byX (bt

e Examples: g(u) = u, g(u) = exp(u)[1 + exp(u)],...
@ The parametric model with functional covariates is correct iff

E(U| X,Z)=0 as.
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Introduction The framework

Testing semiparametric functional regressions

@ Semi-functional partial linear functional regression model

e samples of Y € R, Z € Rk and X < L?]0, 1] are observed
e For some unknown ¢ € R, v € R and m(-)

Y=c+Z'v+mX)+U

@ Before estimating the function m(-), one should check the effect of
the functional covariate

@ Testing the significance of the functional covariate:

E(Y-c—-Zv|X,Z)=0 as.
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The principle: scalar responses case
Outline

@ The principle: scalar responses case
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The principle: scalar responses case
Some notation

@ Letfix R = {p1, p2,--- } a basis of functions in L]0, 1]

e If X € L2[0,1]
X=Y xp
i>1

@ For any positive integer p, let SP = {y e RP : ||y|| = 1}

° Iffy = (/717' . a’Yp)’ define
o
(X,7) =Y X
j=1

@ Let X € L?[0,1], Z € R¥ and U < R be random variables

@ E|U| <ocand E(U) =0
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The principle: scalar responses case
A fundamental Lemma

Lemma

(A) The following statements are equivalent:

Q@ E(U|X,2)=0a.s.
Q E(U|(X,B),Z)=0a.s. V3 c L?[0,1] with || 3|2 = 1

© forany integerp > 1,E(U | (X,~),Z) =0 a.s. Vy € SP.

Q forany integerp>1,E(U | X(P).Z) =0 a.s.
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The principle: scalar responses case

Lemma (Fundamental Lemma cont’d)

(B) Under some mild additional conditions if
PE(U| X,Z2)=0] < 1,

then there exists a positive integer py > 1 such that for any integer
p > po, the set

(yeSP EWU|(X,7),Z)=0as.}

has Lebesgue measure zero on the unit hypersphere SP.
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The principle: scalar responses case
Corollary

Let
@ U suchthatE|U| < co

@ Foranyp>1,v€RP, letwy,(t,2),t € Randz c R, be a
real-valued function such that wp . ((X,~),Z) > 0 for all ||| = 1.

The following statements are equivalent:
@ The null hypothesis Hy : E(U | X,Z) =0 a.s. holds true.

@ forany p > 1 and any set B, C SP with strictly positive Lebesgue
measure in on the unit hypersphere SP,

max E [UE (U[{X, ), Z) Wp,((X.7), 2)] = 0. (1)

YEB

v
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The principle: scalar responses case

@ Forany v € RP, let £,(t, z) be the joint density of (X,~) and Z
@ Let

QM) = E{UE[U [ (X,), Z16((X,7), 2)}
E{E?[U | (X, 7). Z1({(X. ), 2)}.

@ Forany p > 1, let B, C SP be a set with strictly positive Lebesgue
measure in SP.

@ By the Corollary, the null hypothesis Hy : E(U | X,Z) =0 a.s.
holds true if and only if

Vp>1, maxQ(y)=0. (2)

v€Bp

@ Idea: build a sample approximation Qn() of Q(v) and look for the
worse direction v by maximizing Qu(7).
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The test statistic for scalar responses
Outline

e The test statistic for scalar responses
@ Behavior under the null
@ Behavior under the alternatives
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The test statistic for scalar responses

@ Forany v € SP, let
Qn(7) = ,7(,7_11),,k+1 > UUK ((Xi— X, /h) K ((Z - Z)/h),

1<iAj<n

where K (-) is a univariate kernel, f((-) is a multivariate kernel and
h a bandwidth.

@ Qx(7) is a sample based approximation of

Q(y) = E{E*[U | (X,7), Z]£((X,7), 2)}
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The test statistic for scalar responses

@ The least favorable direction + for H, is defined as

in = argmax | nh T Qn(7)/Va(y) —anly Loy | - @)
/o)

where
e V2(-) be as estimate of the variance of nh'/2Q,(-)

° 7(()”) is an initial guess and B, C SP with strictly positive Lebesgue

measure in SP that contains 7(()”)

@ an T oo, N> 1is asequence that depends on the sample size and
the rates of hand p
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The test statistic for scalar responses
The test statistic

@ Consider
T, = nh(k+1)/ /2 @n(Yn)

Vn(3n)

@ An asymptotic a-level test is given by 1(T, > z;_,), where z; is
the (1 — a)-th quantile of the standard normal distribution

@ The variance could be estimated by
2 2

0V = iy 20 UPUPKE (06 = X)) K ((Zi = Z)/h)
J#
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The test statistic for scalar responses

Technical conditions (1/2)

(a) The random vectors (Uy, X1,21), ..., (Un, Xn, Zy) are independent
draws from the random vector (U, X, Z) € R x L]0, 1] x R¥ that
satisfies E|U|™ < oo for some m > 11.

(b) 3 o2 and a2 such that 0 < g2 < Var(U | X,2Z) < 3% < cc a.s.
(c) The sets B, C SP, p > 1 are such that:
(i) Vv € Bp, (X,v) and Z admit a joint density £, (-, -) that satisfies

some mild technical conditions;

(i) the initial ‘guesses’ 7((,”) € By, satisfies the condition: 3C such that
fv(m <C,Vp=>1.
0

(iii) Bp x 0p/—p C By, V1 <p<p'.
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The test statistic for scalar responses

Technical conditions (2/2)

(a) The kernels K and K satisfy some mild conditions
(b) h— 0 and nh2k+1) /In* n — oo for some a > 1.

(c) p > 1 depends on n: 3\ > 0 such that pIn~* nis bounded.
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (1/3)

Under the technical conditions and if Hy holds true,

sup  |Qn(y)| = Op(n~"h~*tD/2p3/21n ).
YEBpCSP
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (1/3)

Under the technical conditions and if Hy holds true,

sup  |Qn(y)| = Op(n~"h~*tD/2p3/21n ).
YEBpCSP

Derived using concentration inequalities for degenerate U—processes
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Under the technical conditions, for a positive sequence «, n > 1 such
that on/{p%/?In N} — oo,

P@n =) =1, under Hy.

V. Patilea (CREST-Ensai, France) FDA SuSTaln Workshop, 2012 21/51



The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Under the technical conditions, for a positive sequence «, n > 1 such
that on/{p%/?In N} — oo,

P@n =) =1, under Hy.

By definition,

P /2Q0(167) Vn(r”) < P2 Qo(i) [Un(in) = (G # 5)
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Under the technical conditions, for a positive sequence «, n > 1 such
that on/{p%/?In N} — oo,

P@n =) =1, under Hy.

By definition,

nh D2 Qu () fUn(1§P) < nh*+D/2Qn(30) /Vn(Fn) — anl(Fn # 2)

)/2
0 < 1(Fn #2§) < ——{ QnlAn)/Vn(3n) = A1) /W) | = 06(1)

n
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (3/3)

If Hy holds true, the test statistic T, converges in law to a standard
normal.
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (3/3)

If Hy holds true, the test statistic T, converges in law to a standard
normal.

Apply the CLT for the U—statistic

Qn (’Y(()p)> :n(n—11)hk+1 Z UinK (<)(I - Xja’Y(()p)>/h) R ((Z/ - Z/)/h)
1<i#j<n
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (3/3)

If Hy holds true, the test statistic T, converges in law to a standard
normal.

Apply the CLT for the U—statistic

Qn (’Y(()p)> :n(n—11)hk+1 Z UinK ((X/ - Xja’Y(()p)>/h) R ((Z/ - Z/)/h)

1<i#j<n

Control the spectral norm (2—norm) and the Frobenius norm of the
zero-diagonal matrix with generic element

n(n—11)hk+1K <<Xi - Xj7’Y(()p)>/h> K ((Zi - Z/)/h) ) i#]
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The test statistic for scalar responses Behavior under the alternatives

The Omnibus test property

nh(k+1)/2Qn(%)
7-n - = <
Vn(7n)
_ (k+1)/2 = _
Te%’: {nh Qn(7)/Va(7) anﬂ{vsﬁvép )}} + anﬂ{%#vép)}
(k+1)/2 (k+1)/2) (=
. nh i n(v) > nh i ~Qn(’7) o Vi€ By C SF
v€Bp Va(7) Vn(7)
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The test statistic for scalar responses Behavior under the alternatives

@ Let some real-valued function 6(X, Z) such that E[6(X,Z)] =0
and 0 < E[6*(X, Z)] < oo, and some sequence of real numbers r;,
that could decrease to zero (the case r, = 1 is also included).

@ Consider the sequence of alternatives

Hin: U=U°+rdé(X,2), n>1, with E(U°|X,Z)=0.
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The test statistic for scalar responses Behavior under the alternatives

@ We show that such directional alternatives can be detected as
soon as r2nh*+1)/2 /o, tends to infinity.

@ However, in the functional data framework, to obtain the
convenient standard normal critical values, we need
1/an=0o(p~3/2In"" n).

@ Hence, the rate r, at which the alternatives H,, tend to the null
hypothesis should satisfy r2nh(<t1)/2/{p3/2In n} — oc.
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The test statistic for scalar responses Behavior under the alternatives

Testing the functional linear model

@ Simplify and consider the case with no covariate Z

@ The model we want to test is the functional linear model defined by
Y=a+ (b X)+ U,
where b € L2[0,1] and a € R are unknown parameters.

@ The null hypothesis is

Ho: E(UX)=0 as.
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The test statistic for scalar responses Behavior under the alternatives

o letbe L2]0, 1] denote a generic estimator of the slope b and let

Q)

_v, - /b (X ()t = a— /{b ()} Xn(t)dt + Up,

where U, = n=13°1 ., U,
oletU=Y —a— <5,X,-> be the residuals and let

Qn('Y;/é,B) Z U U Kh X - )(j,’7>) y YV E Sp’

1</7£j<n

where V2(-; 3, b) is an estimate of the variance of nh'/2Q,(-; 3, b).

@ Given B, C SP, let

~

1/2 3R .3 R
vn = arg gﬂeaif [ nh'/=Qn(v; a, b)/va(v; a, b) anll{wévép)}
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The test statistic for scalar responses Behavior under the alternatives

@ The test statistic is then

T, = nh'/2 Qn(3n: &, o)
Vn(’}/n; aa b)

@ Suppose
o ||b— b,z = Op(n~") for some 3/8 < p < 1/2

e The bandwidth h is such that n'=2¢h'/2 — 0 for some 3/8 < ¢ < p.

@ Under some stronger moment conditions, we show that an
asymptotic a-level test is given by I (T, > z;_,), where z; is the
(1 — a)—quantile of the standard normal distribution.

FDA SuSTaln Workshop, 2012 28 /51
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The test statistic for scalar responses Behavior under the alternatives

Consistency

@ The alternatives of the functional linear model considered are
Hip: Yin=a+(b, X)+rné(X)+UP, n=>1, with E(Uf| X)) =0,

with §(-) an real-valued function such that 0 < E[§*(X)] < oo and
I, n > 1 a sequence of real numbers.

@ Moreover, §(-) satisfies the orthogonality conditions

E[(X))=0 and  E[§(X)X]=0.
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The test statistic for scalar responses Behavior under the alternatives

@ Assume that
(i) rﬁnh‘/z/a,, — 00;

(i) ry "B~ bl = op(1);
(i) an/{p%2Inn} — oco.

@ Then the test based on T, functional linear regression model with
probability tending to 1 (under some mild conditions).
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Extending the principle: functional responses
Outline

@ Extending the principle: functional responses
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Extending the principle: functional responses

The fundamental Lemma

Lemma

Let U, X € L?[0,1] be random functions and Z < R¥ be a random
vector. Assume thatE||U| < co and E(U) = 0.
(A) The following statements are equivalent:

e E(U|X,Z)=0a.s.

e E[(U,E(U|(X,v),Z2))]=0a.s. Vp>1,Vye SP.

(B) Under some mild additional conditions, if P[E(U | X,Z) =0] < 1,
then there exists a positive integer py such that for any integer p > po,
the set

A={yeSP:E(U|(X,v),Z)=0as.}

has Lebesgue measure zero on the unit hypersphere SP.
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Extending the principle: functional responses

The test statistic (1/2)

@ For v € SP define

0n() = g O (Un UK (0= X)W K (Z = Z)/h).
1<i#j<n
@ Let
V) = gyt 2o (Un UKE (06— X,0) /1) K2 (2= 2)/h)

j#i

@ Given B, C SP, the least favorable direction ~ for Hy is defined by

n = argmax [nh(k“)/ 2Qn(7)/Va(v) — anlp Lo -
o
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Extending the principle: functional responses

The test statistic (2/2)

@ The test statistic is

@ We will show that an asymptotic a-level test is given by
I(Th > z1_,), Where z;_,, is the (1 — «)-th quantile of the
standard normal distribution.
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Numerical illustrations

Outline

© Numerical illustrations

V. Patilea (CREST-Ensai, France) FDA SuSTaln Workshop, 2012 35/ 51



Numerical illustrations

The simulation design (1/2)

@ X is a standard Brownian motion on the unit interval [0, 1].
@ Three scenatrii for the distribution of U;:

e Null hypothesis U is N(0, 5?) where o = 1.219, U independent of X.
o Linear alternative

U= (b, X)) +¢j

where b(t) = (sin(2rt%))3, and ¢4, ..., e are i.i.d. N(0,02), where
o = 1.219, corresponding to a 10% signal-to-noise ratio that is,
E({b,X)2)/(E({(b, X)?) + ¢2) = 0.1.

o Quadratic alternative

1 1
U = /O /0 h(s, )X (s)X(1) ds dt + e;

where h(s,t) = 0.6, and ¢4, ..., e, are i.i.d. N(0,0?), where o = 1.

V. Patilea (CREST-Ensai, France)
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Numerical illustrations

The simulation design (2/2)

@ We use the Karhunen-Loéve expansion of the Brownian motion X
> 1 o

to build the basis R = {v2sin((j — 0.5)xt) :j=1,2,...}
@ 1000 samples of (Uy, Xj),. .., (Un, Xn) of sizes n =100 and
n =200

@ ap = 5, Epanechnikov kernel K, several bandwidth values tested
@ Critical values corrected by wild bootstrap
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Numerical illustrations

p=3 pP=5
c, = 0.6 cp, = 0.8 c, =1.0 CT c, = 0.6 cp, = 0.8 c, =1.0 CT
n=100 72(v) 5.9 4.8 4.7 5.8 5.6 5.6 5.1 6.6
v2 73 6.1 5.7 5.8 7.9 6.5 56 6.6
n=200 7E(v) 4.1 5.0 5.4 4.9 45 4.9 4.7 5.5
v2 5.7 5.9 5.6 4.9 5.7 5.8 5.5 5.5

n

Table: Percentage of rejections under Hy, nominal level 5% (‘best’ direction).

p= p=

C,=06 ¢,=08 GC,=10 CT C, =06 ¢,=08 ¢,=10 CT

n=100 72(v) 4.9 4.9 5.0 5.8 5.0 4.9 45 6.6
n

v2 74 6.4 5.9 5.8 75 6.1 5.4 6.6

n=200 72(v) 5.0 5.2 5.1 4.9 5.1 45 4.9 55

A 6.3 6.2 6.0 4.9 5.9 55 5.4 55

Table: Percentage of rejections under Hy, nominal level 5% nominal level 5%
(‘worst’ direction).
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Numerical illustrations

p=3 p=5
c, = 0.6 cp, = 0.8 c, =1.0 CT c, = 0.6 cp, = 0.8 c, =1.0 CT
n=100 75(v) 475 47.8 43.6 79.1 47.7 48.6 43.3 72.4
v2 49.3 51.6 47.0 79.1 49.2 51.7 473 72.4
n=200 7E(v) 83.0 83.5 81.8 98.0 78.9 83.5 82.9 96.5
v2 84.4 85.7 84.2 98.0 81.1 84.7 85.7 96.5

Table: Percent. rejections under the linear altern., level 5% (‘best’ direction).

p= p=
¢, =06 ¢, =08 ¢, =10 CT ¢, =06 ¢, =08 ¢, =10 CT

n=100 #2(v) 240 217 179 79.1 285 227 174 724
72 338 29.4 24.1 79.1 409 33.0 25.0 724

n=200 #2(y) 52.8 52.4 493 98.0 66.3 59.7 529 9.5
A 59.2 58.6 55.2 98.0 725 65.8 59.3 9.5

Table: Percent. rejections under the linear altern., level 5% (‘worst’ direction).
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Numerical illustrations

p= p=

c, = 0.6 cp, = 0.8 c, =1.0 CT c, = 0.6 cp, = 0.8 c, =1.0 CT

n=100 72(7) 19.1 219 231 86 18.2 217 23.1 8.1
v2 23.4 26.0 27.1 8.6 22,6 25.6 27.2 8.1

n=200 7E(v) 34.4 40.5 47.9 7.6 30.6 39.5 42.8 6.9
v2 39.6 443 47.9 76 36.6 42.9 474 6.9

Table: Percent. reject under the quadratic altern; 4(®) = (1,0, ---).

p=3 p=5
¢, = 0.6 cp, = 0.8 c, =1.0 CT c, = 0.6 cp, = 0.8 c, =1.0 CT
n =100 75(7) 129 1.9 10.6 8.6 18.4 13.6 12.4 8.1
?g 19.4 16.0 14.6 8.6 25.4 19.8 16.5 8.1
n =200 ?2('y) 25.7 25.4 24.7 7.6 37.7 36.2 30.8 6.9
?g 30.4 29.4 28.0 7.6 421 39.1 33.7 6.9

Table: Percentage of rejections under the quadratic alternative;
7P) =(0,1,0,---).
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Numerical illustrations

Testing the linear model vs. quadratic alternative
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Numerical illustrations

Testing the linear model vs. cubic alternative
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Numerical illustrations

Testing the quadratic model vs. cubic alternative

@ The simulated model

Y —at /0 " btX(t) i + /O 1 /0 (s, X)X (1) ds dt+54(X) 1 U°

with b(t) =1 forall t € [0,1], and h(s,t) = 0.6 for all s, t € [0, 1]

@ The cubic alternative

(/ [ [ xoxwxedsance - /X(tdz)

where d = 0 under the null and d = 0.9 under the alternative.
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Numerical illustrations

Testing the quadratic model vs. cubic alternative
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Numerical illustrations
Real data application

@ Use Tecator data set. The task is to predict the fat content of a
meat sample on the basis of its near infrared absorbance
spectrum.

@ Test linear functional model and quadratic functional model

@ Both modegls are rejected

absorbance

950 1000 1050
wavelength

FIG. 1. Sample of 204 absorbance spectra for meat specimens.
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Numerical illustrations

Linear model Quadratic model

h 0.18 0.30 0.44 0.59 0.18 0.30 0.44 0.59

p=2 m=1 05 04 02 0.6 24 14 16 3.3
m=2 02 00 00 03 06 03 00 0.7

m=3 00 00 0.0 0.0 00 00 00 0.0

p=3 m=1 0.0 0.0 0.2 0.2 0.0 0.1 0.1 0.0
m=2 00 00 00 0.1 02 0.0 01 0.0

m=3 00 00 0.0 0.0 00 00 00 0.0

Table 1. p-values (in percentages) obtained by applying the new test to the
Tecator data set.
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Conclusions

Outline

@ Conclusions
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Conclusions

Conclusions and possible esxtensions

@ A smoothing based goodness-of-fit test with hybrid (functional and
finite-dimension) data
o Test the effect on the covariates on the response
@ Check parametric functional regression (linear, quadratic,
quantile,...)
@ The asymptotic critical values are standard normal; wild bootstrap
is needed for small sample sizes

@ It detects nonparametric alternatives
@ Mild conditions on the law of the covariates
@ The response/errors could be heteroscedastic

@ Several extensions are possible

e dependent observations (once CLT and concentration inequalities
for U—processes are available)

e testing significance of covariates in functional nonparametric
regression
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