Projection-based nonparametric goodness-of-fit testing with functional data

Valentin Patilea (joint work with C. Sanchez-Sellero & M. Saumard)

CREST-Ensai, France

High dimensional and dependent functional data University of Bristol, September 10-12, 2012

Outline

- The principle: scalar responses case
- 3) The test statistic for scalar responses
- 4 Extending the principle: functional responses
- 5 Numerical illustrations
- 6 Conclusions

• The observations: independent copies of

 $(U, X, Z) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \mathbb{R}^k$

Typically

$$\begin{array}{c} \bullet \\ \mathbf{\mathcal{H}}_1 = \mathbb{R} \text{ and } \mathcal{H}_2 = L^2[0,1] \\ \bullet \\ \mathbf{\mathcal{H}}_2 = L^2[0,1] \\ \mathbf{\mathcal{H$$

2 or $\mathcal{H}_1 = \mathcal{H}_2 = L^2[0, 1]$

3

< ロ > < 同 > < 回 > < 回 >

• The observations: independent copies of

$$(U, X, Z) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \mathbb{R}^k$$

Typically

1 $\mathcal{H}_1 = \mathbb{R}$ and $\mathcal{H}_2 = L^2[0, 1]$ or $\mathcal{H}_1 = \mathcal{H}_2 = L^2[0, 1]$

• The variable U could be observed or *estimated* from some model

- 3 **>** - 3 3

• The observations: independent copies of

$$(U, X, Z) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \mathbb{R}^k$$

Typically

- 1 $\mathcal{H}_1 = \mathbb{R}$ and $\mathcal{H}_2 = L^2[0, 1]$ 2 or $\mathcal{H}_1 = \mathcal{H}_2 = L^2[0, 1]$
- The variable U could be observed or *estimated* from some model
- The problem: test

$$H_0$$
: $\mathbb{E}(U \mid X, Z) = 0$ a.s.

against the nonparametric alternative

$$H_1: \quad \mathbb{P}[\mathbb{E}(U \mid X, Z) = 0] < 1$$

Examples: testing the non-effect

- Independent samples of U, X and Z are observed
 - Scalar response U (functional covariate X, vector covariate Z)
 - Functional response U (functional covariate X, vector covariate Z)

A (10) > A (10) > A (10)

Testing parametric functional regression models (1/2)

The framework

Functional quadratic regression

• samples of $Y \in \mathbb{R}$ and $X \in L^2[0, 1]$ are observed

Introduction

• For some unknown $c \in \mathbb{R}$ and $b_1 \in L^2[0,1], b_2 \in L^2([0,1] \times [0,1])$

$$Y = c + \int_0^1 b_1(t)X(t)dt + \int_0^1 \int_0^1 b_2(t,s)X(t)X(s)dtds + U$$

The functional quadratic model is correct iff

$$\mathbb{E}(U \mid X) = 0 \quad a.s.$$

Introduction The framework

Testing parametric functional regression models (2/2)

Functional generalized linear models

• samples of $Y \in \mathbb{R}, X \in L^2[0, 1]$ and $Z \in \mathbb{R}^k$ are observed

• For some given $g(\cdot)$ and unknown $c \in \mathbb{R}$, $\gamma \in \mathbb{R}^k$ and $b \in L^2[0, 1]$

$$Y = g(c_0 + Z'\gamma + \langle b, X \rangle) + U$$

where

$$\langle b,X\rangle = \int_0^1 b(t)X(t)dt.$$

- Examples: g(u) = u, $g(u) = \exp(u)[1 + \exp(u)]^{-1}$,...
- The parametric model with functional covariates is correct iff

$$\mathbb{E}(U \mid X, Z) = 0$$
 a.s.

Testing semiparametric functional regressions

Semi-functional partial linear functional regression model

- samples of $Y \in \mathbb{R}$, $Z \in \mathbb{R}^k$ and $X \in L^2[0, 1]$ are observed
- For some unknown $c \in \mathbb{R}, \gamma \in \mathbb{R}^k$ and $m(\cdot)$

$$Y = c + Z'\gamma + m(X) + U$$

- Before estimating the function *m*(·), one should check the effect of the functional covariate
- Testing the significance of the functional covariate:

$$\mathbb{E}(Y-c-Z'\gamma\mid X,Z)=0 \quad a.s.$$

- **→ →** •

Outline

Introduction

2 The principle: scalar responses case

- 3) The test statistic for scalar responses
- 4 Extending the principle: functional responses
- 5 Numerical illustrations

6 Conclusions

< 回 ト < 三 ト < 三

Some notation

Let fix R = {ρ₁, ρ₂, · · · } a basis of functions in L²[0, 1]
If X ∈ L²[0, 1]

$$X = \sum_{i \ge 1} x_j \rho_j$$

- For any positive integer p, let $S^p = \{\gamma \in \mathbb{R}^p : \|\gamma\| = 1\}$
- If $\gamma = (\gamma_1, \cdots, \gamma_p)$, define

$$\langle X, \gamma \rangle = \sum_{j=1}^{p} x_j \gamma_j$$

- Let $X \in L^2[0,1], Z \in \mathbb{R}^k$ and $U \in \mathbb{R}$ be random variables
- $\mathbb{E}|U| < \infty$ and $\mathbb{E}(U) = 0$

< ロ > < 同 > < 回 > < 回 >

A fundamental Lemma

Lemma

(A) The following statements are equivalent:

$$\mathbb{E}(U \mid X, Z) = 0 \ a.s.$$

2
$$\mathbb{E}(U \mid \langle X, \beta \rangle, Z) = 0$$
 a.s. $\forall \beta \in L^2[0, 1]$ with $\|\beta\|_{L^2} = 1$

● for any integer $p \ge 1$, $\mathbb{E}(U \mid \langle X, \gamma \rangle, Z) = 0$ a.s. $\forall \gamma \in S^{p}$.

• for any integer $p \ge 1$, $\mathbb{E}(U \mid X^{(p)}, Z) = 0$ a.s.

3

イロン イ理 とく ヨン イヨン

Lemma (Fundamental Lemma cont'd)

(B) Under some mild additional conditions if

$$\mathbb{P}[\mathbb{E}(U \mid X, Z) = 0] < 1,$$

then there exists a positive integer $p_0 \ge 1$ such that for any integer $p > p_0$, the set

$$\{\gamma \in \mathcal{S}^{p} : \mathbb{E}(U \mid \langle X, \gamma \rangle, Z) = 0 \ a.s. \}$$

has Lebesgue measure zero on the unit hypersphere S^p .

A (10) A (10) A (10)

Corollary

Let

- U such that $\mathbb{E}|U| < \infty$
- For any p ≥ 1, γ ∈ ℝ^p, let w_{p,γ}(t, z), t ∈ ℝ and z ∈ ℝ^k, be a real-valued function such that w_{p,γ}(⟨X, γ⟩, Z) > 0 for all ||γ|| = 1.

The following statements are equivalent:

- The null hypothesis H_0 : $\mathbb{E}(U \mid X, Z) = 0$ a.s. holds true.
- I and any set B_p ⊂ S^p with strictly positive Lebesgue measure in on the unit hypersphere S^p,

$$\max_{\gamma \in B_{\rho}} \mathbb{E}\left[U\mathbb{E}\left(U | \langle X, \gamma \rangle, Z \right) w_{\rho,\gamma}(\langle X, \gamma \rangle, Z) \right] = 0.$$
 (1)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any γ ∈ ℝ^ρ, let f_γ(t, z) be the joint density of ⟨X, γ⟩ and Z
Let

$$\begin{array}{lll} Q(\gamma) & = & \mathbb{E}\{U \mathbb{E}[U \mid \langle X, \gamma \rangle, Z] f_{\gamma}(\langle X, \gamma \rangle, Z)\} \\ & = & \mathbb{E}\{\mathbb{E}^{2}[U \mid \langle X, \gamma \rangle, Z] f_{\gamma}(\langle X, \gamma \rangle, Z)\}. \end{array}$$

- For any p ≥ 1, let B_p ⊂ S^p be a set with strictly positive Lebesgue measure in S^p.
- By the Corollary, the null hypothesis H_0 : $\mathbb{E}(U \mid X, Z) = 0$ *a.s.* holds true if and only if

$$\forall p \geq 1, \quad \max_{\gamma \in \mathcal{B}_p} Q(\gamma) = 0.$$
 (2)

Idea: build a sample approximation Q_n(γ) of Q(γ) and look for the worse direction γ by maximizing Q_n(γ).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- 2 The principle: scalar responses case
- The test statistic for scalar responses
 Behavior under the null
 - Behavior under the alternatives
- 4 Extending the principle: functional responses
- 5 Numerical illustrations
- 6 Conclusions

• For any $\gamma \in \mathcal{S}^{p}$, let

$$Q_n(\gamma) = \frac{1}{n(n-1)h^{k+1}} \sum_{1 \le i \ne j \le n} U_i U_j K\left(\langle X_i - X_j, \gamma \rangle / h\right) \widetilde{K}\left((Z_i - Z_j) / h\right),$$

where $K(\cdot)$ is a univariate kernel, $\widetilde{K}(\cdot)$ is a multivariate kernel and *h* a bandwidth.

• $Q_n(\gamma)$ is a sample based approximation of

$$Q(\gamma) = \mathbb{E}\{\mathbb{E}^2[U \mid \langle X, \gamma \rangle, Z] f_{\gamma}(\langle X, \gamma \rangle, Z)\}$$

• The least favorable direction γ for H_0 is defined as

$$\widehat{\gamma}_{n} = \arg \max_{\gamma \in B_{p}} \left[n h^{(k+1)/2} Q_{n}(\gamma) / \widehat{\nu}_{n}(\gamma) - \alpha_{n} \mathbb{I}_{\left\{ \gamma \neq \gamma_{0}^{(p)} \right\}} \right] , \quad (3)$$

where

- $\hat{v}_n^2(\cdot)$ be as estimate of the variance of $nh^{1/2}Q_n(\cdot)$
- γ₀^(p) is an initial guess and B_p ⊂ S^p with strictly positive Lebesgue measure in S^p that contains γ₀^(p)
- α_n ↑ ∞, n ≥ 1 is a sequence that depends on the sample size and the rates of h and p

A D A D A D A

The test statistic

Consider

$$T_n = nh^{(k+1)/2} rac{Q_n(\widehat{\gamma}_n)}{\widehat{v}_n(\widehat{\gamma}_n)}$$

- An asymptotic α-level test is given by I (T_n ≥ z_{1-a}), where z_a is the (1 − a)-th quantile of the standard normal distribution
- The variance could be estimated by

$$\widehat{v}_{n}^{2}(\gamma) = \frac{2}{n(n-1)h^{k+1}} \sum_{j \neq i} U_{i}^{2} U_{j}^{2} \mathcal{K}^{2}\left(\langle X_{i} - X_{j}, \gamma \rangle / h\right) \widetilde{\mathcal{K}}^{2}\left((Z_{i} - Z_{j}) / h\right)$$

一日

Technical conditions (1/2)

(a) The random vectors $(U_1, X_1, Z_1), \ldots, (U_n, X_n, Z_n)$ are independent draws from the random vector $(U, X, Z) \in \mathbb{R} \times L^2[0, 1] \times \mathbb{R}^k$ that satisfies $\mathbb{E}|U|^m < \infty$ for some m > 11.

(b) $\exists \underline{\sigma}^2$ and $\overline{\sigma}^2$ such that $0 < \underline{\sigma}^2 \leq Var(U \mid X, Z) \leq \overline{\sigma}^2 < \infty$ a.s.

- (c) The sets $B_p \subset S^p$, $p \ge 1$ are such that:
 - (i) ∀γ ∈ B_p, ⟨X, γ⟩ and Z admit a joint density f_γ(·, ·) that satisfies some mild technical conditions;
 - (ii) the initial 'guesses' $\gamma_0^{(p)} \in B_p$ satisfies the condition: $\exists C$ such that $f_{\gamma_0^{(p)}} \leq C, \forall p \geq 1.$

(iii)
$$B_{\rho} \times 0_{\rho'-\rho} \subset B_{\rho'}, \forall 1 \leq \rho < \rho'.$$

A (10) A (10)

(a) The kernels K and \widetilde{K} satisfy some mild conditions

(b) $h \to 0$ and $nh^{2(k+1)} / \ln^{\alpha} n \to \infty$ for some $\alpha > 1$.

(c) $p \ge 1$ depends on n: $\exists \lambda > 0$ such that $p \ln^{-\lambda} n$ is bounded.

同下 4 三下 4 三

Behavior under the null

The steps of the theory under the null hypothesis (1/3)

Lemma

Under the technical conditions and if H₀ holds true,

$$\sup_{\boldsymbol{\gamma}\in \mathcal{B}_p\subset \mathcal{S}^p}|Q_n(\boldsymbol{\gamma})|=O_{\mathbb{P}}(n^{-1}h^{-(k+1)/2}p^{3/2}\ln n).$$

Behavior under the null

The steps of the theory under the null hypothesis (1/3)

Lemma

Under the technical conditions and if H₀ holds true,

$$\sup_{\boldsymbol{\gamma}\in \mathcal{B}_p\subset \mathcal{S}^p}|Q_n(\boldsymbol{\gamma})|=O_{\mathbb{P}}(n^{-1}h^{-(k+1)/2}p^{3/2}\ln n).$$

Derived using concentration inequalities for degenerate U-processes

Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Lemma

Under the technical conditions, for a positive sequence α_n , $n \ge 1$ such that $\alpha_n / \{p^{3/2} \ln n\} \to \infty$,

$$\mathbb{P}(\widehat{\gamma}_n = \gamma_0^{(p)}) \to 1, \quad \textit{under } H_0.$$

The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Lemma

Under the technical conditions, for a positive sequence α_n , $n \ge 1$ such that $\alpha_n / \{p^{3/2} \ln n\} \to \infty$,

$$\mathbb{P}(\widehat{\gamma}_n = \gamma_0^{(p)}) \to 1, \quad \textit{under } H_0.$$

By definition,

$$nh^{(k+1)/2}Q_n(\gamma_0^{(p)})/\widehat{v}_n(\gamma_0^{(p)}) \leq nh^{(k+1)/2}Q_n(\widehat{\gamma}_n)/\widehat{v}_n(\widehat{\gamma}_n) - \alpha_n \mathbb{I}(\widehat{\gamma}_n \neq \gamma_0^{(p)})$$

The steps of the theory under the null hypothesis (2/3)

Lemma

Under the technical conditions, for a positive sequence α_n , $n \ge 1$ such that $\alpha_n / \{p^{3/2} \ln n\} \to \infty$,

$$\mathbb{P}(\widehat{\gamma}_n = \gamma_0^{(p)}) \to 1, \quad \text{under } H_0.$$

By definition,

$$nh^{(k+1)/2}Q_n(\gamma_0^{(p)})/\widehat{v}_n(\gamma_0^{(p)}) \leq nh^{(k+1)/2}Q_n(\widehat{\gamma}_n)/\widehat{v}_n(\widehat{\gamma}_n) - \alpha_n\mathbb{I}(\widehat{\gamma}_n \neq \gamma_0^{(p)})$$

$$0 \leq \mathbb{I}(\widehat{\gamma}_n \neq \gamma_0^{(p)}) \leq \frac{nh^{(k+1)/2}}{\alpha_n} \left\{ Q_n(\widehat{\gamma}_n) / \widehat{v}_n(\widehat{\gamma}_n) - Q_n(\gamma_0^{(p)}) / \widehat{v}_n(\gamma_0^{(p)}) \right\} = o_{\mathbb{P}}(1)$$

Behavior under the null

The steps of the theory under the null hypothesis (3/3)

Theorem

If H_0 holds true, the test statistic T_n converges in law to a standard normal.

/□ ▶ ◀ 글 ▶ ◀ 글

Behavior under the null

The steps of the theory under the null hypothesis (3/3)

Theorem

If H_0 holds true, the test statistic T_n converges in law to a standard normal.

Apply the CLT for the U-statistic

$$Q_n\left(\gamma_0^{(p)}\right) = \frac{1}{n(n-1)h^{k+1}} \sum_{1 \le i \ne j \le n} U_i U_j K\left(\langle X_i - X_j, \gamma_0^{(p)} \rangle / h\right) \widetilde{K}\left((Z_i - Z_j) / h\right)$$

A .

Behavior under the null

The steps of the theory under the null hypothesis (3/3)

Theorem

If H_0 holds true, the test statistic T_n converges in law to a standard normal.

Apply the CLT for the *U*-statistic

$$Q_n\left(\gamma_0^{(p)}\right) = \frac{1}{n(n-1)h^{k+1}} \sum_{1 \le i \ne j \le n} U_i U_j K\left(\langle X_i - X_j, \gamma_0^{(p)} \rangle / h\right) \widetilde{K}\left((Z_i - Z_j) / h\right)$$

Control the spectral norm (2-norm) and the Frobenius norm of the zero-diagonal matrix with generic element

$$\frac{1}{n(n-1)h^{k+1}} \mathcal{K}\left(\langle X_i - X_j, \gamma_0^{(p)} \rangle / h\right) \widetilde{\mathcal{K}}\left((Z_i - Z_j) / h\right), \qquad i \neq j$$

The Omnibus test property

$$T_{n} = \frac{nh^{(k+1)/2}Q_{n}(\widehat{\gamma}_{n})}{\widehat{v}_{n}(\widehat{\gamma}_{n})}$$

$$= \max_{\gamma \in B_{p}} \left\{ nh^{(k+1)/2}Q_{n}(\gamma)/\widehat{v}_{n}(\gamma) - \alpha_{n}\mathbb{I}_{\{\gamma \neq \gamma_{0}^{(p)}\}} \right\} + \alpha_{n}\mathbb{I}_{\{\widehat{\gamma}_{n} \neq \gamma_{0}^{(p)}\}}$$

$$\geq \max_{\gamma \in B_{p}} \frac{nh^{(k+1)/2}Q_{n}(\gamma)}{\widehat{v}_{n}(\gamma)} - \alpha_{n} \geq \frac{nh^{(k+1)/2}Q_{n}(\widetilde{\gamma})}{\widehat{v}_{n}(\widetilde{\gamma})} - \alpha_{n}, \quad \forall \widetilde{\gamma} \in B_{p} \subset S^{k}$$

크

< 回 ト < 三 ト < 三

- Let some real-valued function $\delta(X, Z)$ such that $\mathbb{E}[\delta(X, Z)] = 0$ and $0 < \mathbb{E}[\delta^4(X, Z)] < \infty$, and some sequence of real numbers r_n that could decrease to zero (the case $r_n \equiv 1$ is also included).
- Consider the sequence of alternatives

$$H_{1n}: U = U^0 + r_n \delta(X, Z), \quad n \ge 1, \text{ with } \mathbb{E}(U^0 \mid X, Z) = 0.$$

- We show that such directional alternatives can be detected as soon as $r_n^2 nh^{(k+1)/2}/\alpha_n$ tends to infinity.
- However, in the functional data framework, to obtain the convenient standard normal critical values, we need $1/\alpha_n = o(p^{-3/2} \ln^{-1} n)$.
- Hence, the rate r_n at which the alternatives H_{1n} tend to the null hypothesis should satisfy $r_n^2 n h^{(k+1)/2} / \{p^{3/2} \ln n\} \to \infty$.

一日

- Simplify and consider the case with no covariate Z
- The model we want to test is the functional linear model defined by

$$Y = a + \langle b, X \rangle + U,$$

where $b \in L^2[0, 1]$ and $a \in \mathbb{R}$ are unknown parameters.

• The null hypothesis is

$$H_0: \mathbb{E}(U|X) = 0 \quad \text{a.s.}$$

A > + = + + =

• Let $\widehat{b} \in L^2[0, 1]$ denote a generic estimator of the slope *b* and let

$$\widehat{a} = \overline{Y}_n - \int_0^1 \widehat{b}(t) \overline{X}_n(t) dt = a - \int_0^1 \{\widehat{b}(t) - b(t)\} \overline{X}_n(t) dt + \overline{U}_n,$$

where $\overline{U}_n = n^{-1} \sum_{i=1}^n U_i$. • Let $\widehat{U}_i = Y_i - \widehat{a} - \langle \widehat{b}, X_i \rangle$ be the residuals and let

$$Q_n(\gamma; \widehat{a}, \widehat{b}) = \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le n} \widehat{U}_i \widehat{U}_j \frac{1}{h} K_h(\langle X_i - X_j, \gamma \rangle), \quad \gamma \in \mathcal{S}^p,$$

where $\hat{v}_n^2(\cdot; \hat{a}, \hat{b})$ is an estimate of the variance of $nh^{1/2}Q_n(\cdot; \hat{a}, \hat{b})$.

• Given $B_p \subset S^p$, let

$$\widehat{\gamma}_{n} = \arg \max_{\gamma \in B_{p}} \left[nh^{1/2} Q_{n}(\gamma; \widehat{a}, \widehat{b}) / \widehat{v}_{n}(\gamma; \widehat{a}, \widehat{b}) - \alpha_{n} \mathbb{I}_{\left\{ \gamma \neq \gamma_{0}^{(p)} \right\}} \right]$$

The test statistic is then

$$T_n = nh^{1/2} \frac{Q_n(\widehat{\gamma}_n; \widehat{a}, \widehat{b})}{\widehat{v}_n(\widehat{\gamma}_n; \widehat{a}, \widehat{b})}$$

Suppose

•
$$\|\widehat{b} - b\|_{L^2} = O_{\mathbb{P}}(n^{-
ho})$$
 for some $3/8 <
ho \leq 1/2$

• The bandwidth *h* is such that $n^{1-2\zeta}h^{1/2} \rightarrow 0$ for some $3/8 < \zeta < \rho$.

• Under some stronger moment conditions, we show that an asymptotic α -level test is given by $\mathbb{I}(T_n \ge z_{1-a})$, where z_a is the (1 - a)-quantile of the standard normal distribution.

Consistency

The alternatives of the functional linear model considered are

$$H_{1n}: Y_{in} = a + \langle b, X_i \rangle + r_n \delta(X_i) + U_i^0, \quad n \ge 1, \quad \text{with} \ \mathbb{E}(U_i^0 \mid X_i) = 0,$$

with $\delta(\cdot)$ an real-valued function such that $0 < \mathbb{E}[\delta^4(X)] < \infty$ and $r_n, n \ge 1$ a sequence of real numbers.

• Moreover, $\delta(\cdot)$ satisfies the orthogonality conditions

$$\mathbb{E}[\delta(X)] = 0$$
 and $\mathbb{E}[\delta(X)X] = 0.$

< 回 > < 回 > < 回 >

Assume that

- (i) $r_n^2 n h^{1/2} / \alpha_n \to \infty;$ (ii) $r_n^{-1} \| \widehat{b} - b \|_{L^2} = o_{\mathbb{P}}(1);$ (iii) $\alpha_n / \{ p^{3/2} \ln n \} \to \infty.$
- Then the test based on *T_n* functional linear regression model with probability tending to 1 (under some mild conditions).

Outline

Introduction

- The principle: scalar responses case
- 3 The test statistic for scalar responses
- Extending the principle: functional responses
- 5 Numerical illustrations

6 Conclusions

伺 ト イ ヨ ト イ ヨ

Lemma

Let $U, X \in L^2[0, 1]$ be random functions and $Z \in \mathbb{R}^k$ be a random vector. Assume that $\mathbb{E}||U|| < \infty$ and $\mathbb{E}(U) = 0$. (A) The following statements are equivalent:

- $\mathbb{E}(U \mid X, Z) = 0$ a.s.
- $\mathbb{E}\left[\langle U, \mathbb{E}\left(U \mid \langle X, \gamma \rangle, Z\right)\rangle\right] = 0 \text{ a.s. } \forall p \geq 1, \forall \gamma \in S^{p}.$

(B) Under some mild additional conditions, if $\mathbb{P}[\mathbb{E}(U \mid X, Z) = 0] < 1$, then there exists a positive integer p_0 such that for any integer $p \ge p_0$, the set

$$\mathcal{A} = \{ \gamma \in \mathcal{S}^{p} : \mathbb{E}(U \mid \langle X, \gamma \rangle, Z) = 0 \text{ a.s.} \}$$

has Lebesgue measure zero on the unit hypersphere S^p .

The test statistic (1/2)

• For $\gamma \in \mathcal{S}^p$ define

$$Q_n(\gamma) = \frac{1}{n(n-1)h^{k+1}} \sum_{1 \le i \ne j \le n} \langle U_i, U_j \rangle K\left(\langle X_i - X_j, \gamma \rangle / h \right) \widetilde{K}\left((Z_i - Z_j) / h \right),$$

Let

$$\widehat{\nu}_{n}^{2}(\gamma) = \frac{2}{n(n-1)h^{k+1}} \sum_{j \neq i} \langle U_{i}, U_{j} \rangle^{2} \mathcal{K}^{2} \left(\langle X_{i} - X_{j}, \gamma \rangle / h \right) \widetilde{\mathcal{K}}^{2} \left((Z_{i} - Z_{j}) / h \right)$$

• Given $B_{\rho} \subset S^{\rho}$, the least favorable direction γ for H_0 is defined by

$$\widehat{\gamma}_{n} = \arg \max_{\gamma \in \mathcal{B}_{p}} \left[nh^{(k+1)/2} Q_{n}(\gamma) / \widehat{\nu}_{n}(\gamma) - \alpha_{n} \mathbb{I}_{\left\{ \gamma \neq \gamma_{0}^{(p)} \right\}} \right]$$

< 回 ト < 三 ト < 三

The test statistic (2/2)

The test statistic is

$$T_n = nh^{1/2} \frac{Q_n(\widehat{\gamma}_n)}{\widehat{v}_n(\widehat{\gamma}_n)} .$$
(4)

We will show that an asymptotic *α*-level test is given by
 I (*T_n* ≥ *z*_{1-α}), where *z*_{1-α} is the (1 − α)-th quantile of the standard normal distribution.

3 b 4

Outline

1 Introduction

- 2 The principle: scalar responses case
- 3 The test statistic for scalar responses
- 4 Extending the principle: functional responses
- 5 Numerical illustrations

6 Conclusions

< 回 ト < 三 ト < 三

The simulation design (1/2)

- X is a standard Brownian motion on the unit interval [0, 1].
- Three scenarii for the distribution of *U_i*:
 - Null hypothesis U is $N(0, \sigma^2)$ where $\sigma = 1.219$, U independent of X.
 - Linear alternative

$$U_i = \langle b, X_i \rangle + \varepsilon_i$$

where $b(t) = (\sin(2\pi t^3))^3$, and $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $N(0, \sigma^2)$, where $\sigma = 1.219$, corresponding to a 10% signal-to-noise ratio that is, $E(\langle b, X \rangle^2)/(E(\langle b, X \rangle^2) + \sigma^2) = 0.1$.

• Quadratic alternative

$$U_i = \int_0^1 \int_0^1 h(s,t) X(s) X(t) \, ds \, dt + \varepsilon_i$$

where h(s, t) = 0.6, and $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $N(0, \sigma^2)$, where $\sigma = 1$.

< ロ > < 同 > < 回 > < 回 >

The simulation design (2/2)

We use the Karhunen-Loève expansion of the Brownian motion X

$$X(t) = \sum_{j=1}^{\infty} x_j \frac{1}{(j-0.5)\pi} \sqrt{2} \sin\left((j-0.5)\pi t\right)$$

to build the basis $\mathcal{R} = \{\sqrt{2} \sin((j - 0.5)\pi t) : j = 1, 2, ...\}$

- 1000 samples of $(U_1, X_1), ..., (U_n, X_n)$ of sizes n = 100 and n = 200
- $\alpha_n = 5$, Epanechnikov kernel *K*, several bandwidth values tested
- Critical values corrected by wild bootstrap

< 回 ト < 三 ト < 三

		ho = 3					ho=5			
		$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	CT		$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	СТ
<i>n</i> = 100	$\hat{\tau}_n^2(\gamma)$	5.9	4.8	4.7	5.8		5.6	5.6	5.1	6.6
	\widehat{v}_n^2	7.3	6.1	5.7	5.8		7.9	6.5	5.6	6.6
<i>n</i> = 200	$\widehat{\tau}_n^2(\gamma)$	4.1	5.0	5.4	4.9		4.5	4.9	4.7	5.5
	\widehat{v}_n^2	5.7	5.9	5.6	4.9		5.7	5.8	5.5	5.5

Table: Percentage of rejections under H_0 , nominal level 5% ('best' direction).

			p = 3			$\rho = 5$				
		$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	CT	$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	СТ	
<i>n</i> = 100	$\hat{\tau}_n^2(\gamma)$	4.9	4.9	5.0	5.8	5.0	4.9	4.5	6.6	
	\widehat{v}_n^2	7.1	6.4	5.9	5.8	7.5	6.1	5.4	6.6	
<i>n</i> = 200	$\widehat{\tau}_n^2(\gamma)$	5.0	5.2	5.1	4.9	5.1	4.5	4.9	5.5	
	\widehat{v}_n^2	6.3	6.2	6.0	4.9	5.9	5.5	5.4	5.5	

Table: Percentage of rejections under H_0 , nominal level 5% nominal level 5% ('worst' direction).

V. Patilea (CREST-Ensai, France)

		$\rho = 3$					p = 5				
		$c_{h} = 0.6$	<i>c</i> _{<i>h</i>} = 0.8	$c_{h} = 1.0$	СТ		$c_{h} = 0.6$	$c_{h} = 0.8$	<i>c_h</i> = 1.0	СТ	
<i>n</i> = 100	$\hat{\tau}_n^2(\gamma)$	47.5	47.8	43.6	79.1		47.7	48.6	43.3	72.4	
	\widehat{v}_n^2	49.3	51.6	47.0	79.1		49.2	51.7	47.3	72.4	
<i>n</i> = 200	$\widehat{\tau}_n^2(\gamma)$	83.0	83.5	81.8	98.0		78.9	83.5	82.9	96.5	
	\widehat{v}_n^2	84.4	85.7	84.2	98.0		81.1	84.7	85.7	96.5	

Table: Percent. rejections under the linear altern., level 5% ('best' direction).

		ho=3					$\rho = 5$				
		$c_{h} = 0.6$	$c_{h} = 0.8$	<i>c_h</i> = 1.0	СТ		$c_{h} = 0.6$	<i>c</i> _{<i>h</i>} = 0.8	<i>c_h</i> = 1.0	СТ	
<i>n</i> = 100	$\hat{\tau}_n^2(\gamma)$	24.0	21.7	17.9	79.1		28.5	22.7	17.1	72.4	
	\widehat{v}_n^2	33.8	29.4	24.1	79.1		40.9	33.0	25.0	72.4	
<i>n</i> = 200	$\widehat{\tau}_n^2(\gamma)$	52.8	52.4	49.3	98.0		66.3	59.7	52.9	96.5	
	\widehat{v}_n^2	59.2	58.6	55.2	98.0		72.5	65.8	59.3	96.5	

Table: Percent. rejections under the linear altern., level 5% ('worst' direction).

A (10) A (10) A (10)

			p = 3			$\rho = 5$			
		$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	CT	$c_{h} = 0.6$	<i>c</i> _{<i>h</i>} = 0.8	$c_{h} = 1.0$	СТ
<i>n</i> = 100	$\hat{\tau}_n^2(\gamma)$	19.1	21.9	23.1	8.6	18.2	21.7	23.1	8.1
	\widehat{v}_n^2	23.4	26.0	27.1	8.6	22.6	25.6	27.2	8.1
<i>n</i> = 200	$\widehat{\tau}_n^2(\gamma)$	34.4	40.5	47.9	7.6	30.6	39.5	42.8	6.9
	\widehat{v}_n^2	39.6	44.3	47.9	7.6	36.6	42.9	47.4	6.9

Table: Percent. reject under the quadratic altern; $\gamma^{(p)} = (1, 0, \cdots)$.

			p = 3			$\rho = 5$				
		$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	CT	$c_{h} = 0.6$	$c_{h} = 0.8$	$c_{h} = 1.0$	СТ	
<i>n</i> = 100	$\hat{\tau}_{g}^{2}(\gamma)$	12.9	11.9	10.6	8.6	18.4	13.6	12.4	8.1	
	\hat{v}_n^2	19.4	16.0	14.6	8.6	25.4	19.8	16.5	8.1	
<i>n</i> = 200	$\hat{\tau}_{n}^{2}(\gamma)$	25.7	25.4	24.7	7.6	37.7	36.2	30.8	6.9	
	\hat{v}_n^2	30.4	29.4	28.0	7.6	42.1	39.1	33.7	6.9	

Table: Percentage of rejections under the quadratic alternative; $\gamma^{(p)} = (0, 1, 0, \cdots).$

< 回 ト < 三 ト < 三

Testing the linear model vs. quadratic alternative

Numerical illustrations

Testing the linear model vs. cubic alternative

Numerical illustrations

Testing the quadratic model vs. cubic alternative

The simulated model

$$Y = a + \int_0^1 b(t)X(t) \, dt + \int_0^1 \int_0^1 h(s,t)X(s)X(t) \, ds \, dt + \delta_c(X) + U^0$$

with b(t) = 1 for all $t \in [0, 1]$, and h(s, t) = 0.6 for all $s, t \in [0, 1]$

• The cubic alternative

$$\delta_c(X) = d\left(\int_0^1\int_0^1\int_0^1X(s)X(t)X(z)\,ds\,dt\,dz - \int_0^1X(t)dt\right)$$

where d = 0 under the null and d = 0.9 under the alternative.

A D A D A A D

Numerical illustrations

Testing the quadratic model vs. cubic alternative

Bandwidth

Real data application

- Use Tecator data set. The task is to predict the fat content of a meat sample on the basis of its near infrared absorbance spectrum.
- Test linear functional model and quadratic functional model
- Both models are rejected

FIG. 1. Sample of 204 absorbance spectra for meat specimens.

			Linear	model			Quadrat	ic mode	əl
	h	0.18	0.30	0.44	0.59	0.18	0.30	0.44	0.59
<i>p</i> = 2	<i>m</i> = 1	0.5	0.4	0.2	0.6	2.4	1.4	1.6	3.3
	<i>m</i> = 2	0.2	0.0	0.0	0.3	0.6	0.3	0.0	0.7
	<i>m</i> = 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<i>p</i> = 3	<i>m</i> = 1	0.0	0.0	0.2	0.2	0.0	0.1	0.1	0.0
	<i>m</i> = 2	0.0	0.0	0.0	0.1	0.2	0.0	0.1	0.0
	<i>m</i> = 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 1. p-values (in percentages) obtained by applying the new test to the Tecator data set.

A (10) A (10) A (10)

Outline

Introduction

- The principle: scalar responses case
- 3 The test statistic for scalar responses
- 4 Extending the principle: functional responses
- 5 Numerical illustrations

< 回 ト < 三 ト < 三

Conclusions

Conclusions and possible esxtensions

- A smoothing based goodness-of-fit test with hybrid (functional and finite-dimension) data
 - Test the effect on the covariates on the response
 - Check parametric functional regression (linear, quadratic, quantile,...)
- The asymptotic critical values are standard normal; wild bootstrap is needed for small sample sizes
- It detects nonparametric alternatives
- Mild conditions on the law of the covariates
- The response/errors could be heteroscedastic
- Several extensions are possible
 - dependent observations (once CLT and concentration inequalities for U-processes are available)
 - testing significance of covariates in functional nonparametric regression

くぼう くほう くほう

Some References (1/2)

- CARDOT, H., GOIA, P., AND SARDA, P. (2004). Testing for no effect in functional linear regression models, some computational approaches. *Communications in Statistics - Simulation and Computation* 33, 179–199.
- CHEN, D., HALL, P., MÜLLER, H.G. (2011). Single and multiple index functional regression models with nonparametric link. Annals of Statistics 39, 1720–1747
- CRAMBES, C., KNEIP, A., AND SARDA, P. (2008). Smoothing splines estimators for functional linear regression. *Annals of Statistics* 37, 35–72.
- DELSOL, L., FERRATY, F., AND VIEU, P. (2011). Structural test in regression on functional variables. *Journal of Multivariate Analysis* 102, 422–447.
- FERRATY, F. (Ed.) (2011). *Recent Advances in Functional Data Analysis and Related Topics*. Springer-Verlag Berlin Heidelberg.
- GARCÍA-PORTUGUÉS, E., GONZÁLEZ-MANTEIGA, W., AND FEBRERO-BANDE, M. (2012) A goodness-of-fit test for the functional linear model with scalar response. arXiv:1205.6167v3 [stat.ME]
- HALL, P., AND HOROWITZ, J.L. (2007). Methodology and convergence rates for functional linear regression. Annals of Statistics 35, 70–91.

Some References (2/2)

- HORVÀTH, L., AND REEDER, R. (2011). A test of significance in functional quadratic regression. arXiv:1105.0014v1 [math.ST].
- MAJOR, P. (2006). An estimate on the supremum of a nice class of stochastic integrals and U-statistics. *Probability Theory and Related Fields* 134, 489–537.
- MÜLLER, H.G. AND STADTMÜLLER, U. (2005). Generalized functional linear models. Annals of Statistics 33, 774–805.
- RAMSAY, J., AND SILVERMAN, B.W. (2005). *Functional Data Analysis* (2nd ed.). Springer-Verlag, New York.
- YAO, F., AND MÜLLER, H.G. (2010). Functional quadratic regression. *Biometrika* 97, 49–64.
- ZHENG, J.X. (1996). A consistent test of functional form via nonparametric estimation techniques. *J. Econometrics* **75**, 263–289.

-

イロト 不得 トイヨト イヨト

Manuscripts available on arXiv

- PATILEA, V., SÁNCHEZ-SELLERO, C., AND SAUMARD, M. (2012).
 Projection-based nonparametric goodness-of-fit testing with functional covariates. arXiv:1205.5578 [math.ST]
- PATILEA, V., SÁNCHEZ-SELLERO, C., AND SAUMARD, M. (2012). Nonparametric testing for no-effect with functional responses and functional covariates. arXiv:1209.2085 [math.ST]

< 回 > < 三 > < 三 >