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Introduction The framework

The observations: independent copies of

(U,X ,Z ) ∈ H1 ×H2 × Rk

Typically
1 H1 = R and H2 = L2[0,1]
2 or H1 = H2 = L2[0,1]

The variable U could be observed or estimated from some model

The problem: test

H0 : E(U | X ,Z ) = 0 a.s.

against the nonparametric alternative

H1 : P[E(U | X ,Z ) = 0] < 1
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Introduction The framework

Examples: testing the non-effect

Independent samples of U, X and Z are observed

Scalar response U (functional covariate X , vector covariate Z )

Functional response U (functional covariate X , vector covariate Z )
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Introduction The framework

Testing parametric functional regression models (1/2)

Functional quadratic regression
samples of Y ∈ R and X ∈ L2[0,1] are observed

For some unknown c ∈ R and b1 ∈ L2[0,1], b2 ∈ L2([0,1]× [0,1])

Y = c +

∫ 1

0
b1(t)X (t)dt +

∫ 1

0

∫ 1

0
b2(t , s)X (t)X (s)dtds + U

The functional quadratic model is correct iff

E(U | X ) = 0 a.s.
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Introduction The framework

Testing parametric functional regression models (2/2)

Functional generalized linear models
samples of Y ∈ R, X ∈ L2[0,1] and Z ∈ Rk are observed

For some given g(·) and unknown c ∈ R, γ ∈ Rk and b ∈ L2[0,1]

Y = g(c0 + Z ′γ + 〈b,X 〉) + U

where

〈b,X 〉 =
∫ 1

0
b(t)X (t)dt .

Examples: g(u) = u, g(u) = exp(u)[1 + exp(u)]−1,...

The parametric model with functional covariates is correct iff

E(U | X ,Z ) = 0 a.s.
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Introduction The framework

Testing semiparametric functional regressions

Semi-functional partial linear functional regression model
samples of Y ∈ R, Z ∈ Rk and X ∈ L2[0,1] are observed
For some unknown c ∈ R, γ ∈ Rk and m(·)

Y = c + Z ′γ + m(X ) + U

Before estimating the function m(·), one should check the effect of
the functional covariate

Testing the significance of the functional covariate:

E(Y − c − Z ′γ | X ,Z ) = 0 a.s.
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The principle: scalar responses case
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The principle: scalar responses case

Some notation

Let fix R = {ρ1, ρ2, · · · } a basis of functions in L2[0,1]
If X ∈ L2[0,1]

X =
∑
i≥1

xjρj

For any positive integer p, let Sp = {γ ∈ Rp : ‖γ‖ = 1}

If γ = (γ1, · · · , γp), define

〈X , γ〉 =
p∑

j=1

xjγj

Let X ∈ L2[0,1], Z ∈ Rk and U ∈ R be random variables

E|U| <∞ and E(U) = 0
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The principle: scalar responses case

A fundamental Lemma

Lemma
(A) The following statements are equivalent:

1 E(U | X ,Z ) = 0 a.s.

2 E(U | 〈X , β〉,Z ) = 0 a.s. ∀β ∈ L2[0,1] with ‖β‖L2 = 1

3 for any integer p ≥ 1, E(U | 〈X , γ〉,Z ) = 0 a.s. ∀γ ∈ Sp.

4 for any integer p ≥ 1, E(U | X (p),Z ) = 0 a.s.
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The principle: scalar responses case

Lemma (Fundamental Lemma cont’d)
(B) Under some mild additional conditions if

P[E(U | X ,Z ) = 0] < 1,

then there exists a positive integer p0 ≥ 1 such that for any integer
p > p0, the set

{γ ∈ Sp : E(U | 〈X , γ〉,Z ) = 0 a.s. }

has Lebesgue measure zero on the unit hypersphere Sp.
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The principle: scalar responses case

Corollary
Let

U such that E|U| <∞
For any p ≥ 1, γ ∈ Rp, let wp,γ(t , z), t ∈ R and z ∈ Rk , be a
real-valued function such that wp,γ(〈X , γ〉,Z ) > 0 for all ‖γ‖ = 1.

The following statements are equivalent:

1 The null hypothesis H0 : E(U | X ,Z ) = 0 a.s. holds true.

2 for any p ≥ 1 and any set Bp ⊂ Sp with strictly positive Lebesgue
measure in on the unit hypersphere Sp,

max
γ∈Bp

E [UE (U|〈X , γ〉,Z )wp,γ(〈X , γ〉,Z )] = 0. (1)
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The principle: scalar responses case

For any γ ∈ Rp, let fγ(t , z) be the joint density of 〈X , γ〉 and Z
Let

Q(γ) = E{U E[U | 〈X , γ〉,Z ]fγ(〈X , γ〉,Z )}
= E{E2[U | 〈X , γ〉,Z ]fγ(〈X , γ〉,Z )}.

For any p ≥ 1, let Bp ⊂ Sp be a set with strictly positive Lebesgue
measure in Sp.

By the Corollary, the null hypothesis H0 : E(U | X ,Z ) = 0 a.s.
holds true if and only if

∀p ≥ 1, max
γ∈Bp

Q(γ) = 0. (2)

Idea: build a sample approximation Qn(γ) of Q(γ) and look for the
worse direction γ by maximizing Qn(γ).
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The test statistic for scalar responses

For any γ ∈ Sp, let

Qn (γ) =
1

n(n − 1)hk+1

∑
1≤i 6=j≤n

UiUjK
(
〈Xi − Xj , γ〉/h

)
K̃
(
(Zi − Zj)/h

)
,

where K (·) is a univariate kernel, K̃ (·) is a multivariate kernel and
h a bandwidth.

Qn(γ) is a sample based approximation of

Q(γ) = E{E2[U | 〈X , γ〉,Z ]fγ(〈X , γ〉,Z )}
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The test statistic for scalar responses

The least favorable direction γ for H0 is defined as

γ̂n = arg max
γ∈Bp

[
nh(k+1)/2Qn(γ)/v̂n(γ)− αnI{γ 6=γ(p)0

}] , (3)

where

v̂2
n (·) be as estimate of the variance of nh1/2Qn(·)

γ
(p)
0 is an initial guess and Bp ⊂ Sp with strictly positive Lebesgue

measure in Sp that contains γ(p)0

αn ↑ ∞, n ≥ 1 is a sequence that depends on the sample size and
the rates of h and p
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The test statistic for scalar responses

The test statistic

Consider
Tn = nh(k+1)/2 Qn(γ̂n)

v̂n(γ̂n)

An asymptotic α-level test is given by I (Tn ≥ z1−a), where za is
the (1− a)-th quantile of the standard normal distribution

The variance could be estimated by

v̂2
n (γ) =

2
n(n − 1)hk+1

∑
j 6=i

U2
i U2

j K 2 (〈Xi − Xj , γ〉/h
)

K̃ 2 ((Zi − Zj)/h
)
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The test statistic for scalar responses

Technical conditions (1/2)

(a) The random vectors (U1,X1,Z1), . . . , (Un,Xn,Zn) are independent
draws from the random vector (U,X ,Z ) ∈ R× L2[0,1]× Rk that
satisfies E|U|m <∞ for some m > 11.

(b) ∃ σ2 and σ2 such that 0 < σ2 ≤ Var(U | X ,Z ) ≤ σ2 <∞ a.s.

(c) The sets Bp ⊂ Sp, p ≥ 1 are such that:
(i) ∀γ ∈ Bp, 〈X , γ〉 and Z admit a joint density fγ(·, ·) that satisfies

some mild technical conditions;

(ii) the initial ‘guesses’ γ(p)0 ∈ Bp satisfies the condition: ∃C such that
f
γ
(p)
0
≤ C, ∀p ≥ 1.

(iii) Bp × 0p ′−p ⊂ Bp ′ , ∀1 ≤ p < p ′.
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The test statistic for scalar responses

Technical conditions (2/2)

(a) The kernels K and K̃ satisfy some mild conditions

(b) h→ 0 and nh2(k+1)/ lnα n→∞ for some α > 1.

(c) p ≥ 1 depends on n: ∃λ > 0 such that p ln−λ n is bounded.
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (1/3)

Lemma
Under the technical conditions and if H0 holds true,

sup
γ∈Bp⊂Sp

|Qn(γ)| = OP(n−1h−(k+1)/2p3/2 ln n).

Derived using concentration inequalities for degenerate U−processes
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (2/3)

Lemma
Under the technical conditions, for a positive sequence αn, n ≥ 1 such
that αn/{p3/2 ln n} → ∞,

P(γ̂n = γ
(p)
0 )→ 1, under H0.

By definition,

nh(k+1)/2Qn(γ
(p)
0 )/v̂n(γ

(p)
0 ) ≤ nh(k+1)/2Qn(γ̂n)/v̂n(γ̂n)− αnI(γ̂n 6= γ

(p)
0 )

0 ≤ I(γ̂n 6= γ
(p)
0 ) ≤ nh(k+1)/2

αn

{
Qn(γ̂n)/v̂n(γ̂n)−Qn(γ

(p)
0 )/v̂n(γ

(p)
0 )
}
= oP(1)
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The test statistic for scalar responses Behavior under the null

The steps of the theory under the null hypothesis (3/3)

Theorem

If H0 holds true, the test statistic Tn converges in law to a standard
normal.

Apply the CLT for the U−statistic

Qn

(
γ
(p)
0

)
=

1
n(n − 1)hk+1

∑
1≤i 6=j≤n

UiUjK
(
〈Xi − Xj , γ

(p)
0 〉/h

)
K̃
(
(Zi − Zj)/h

)
Control the spectral norm (2−norm) and the Frobenius norm of the
zero-diagonal matrix with generic element

1
n(n − 1)hk+1 K

(
〈Xi − Xj , γ

(p)
0 〉/h

)
K̃
(
(Zi − Zj)/h

)
, i 6= j
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The test statistic for scalar responses Behavior under the alternatives

The Omnibus test property

Tn =
nh(k+1)/2Qn(γ̂n)

v̂n(γ̂n)

= max
γ∈Bp

{
nh(k+1)/2Qn(γ)/v̂n(γ)− αnI{γ 6=γ(p)0 }

}
+ αnI{γ̂n 6=γ(p)0 }

≥ max
γ∈Bp

nh(k+1)/2Qn(γ)

v̂n(γ)
− αn ≥

nh(k+1)/2Qn(γ̃)

v̂n(γ̃)
− αn, ∀γ̃ ∈ Bp ⊂ Sp,
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The test statistic for scalar responses Behavior under the alternatives

Let some real-valued function δ(X ,Z ) such that E[δ(X ,Z )] = 0
and 0 < E[δ4(X ,Z )] <∞, and some sequence of real numbers rn
that could decrease to zero (the case rn ≡ 1 is also included).

Consider the sequence of alternatives

H1n : U = U0 + rnδ(X ,Z ), n ≥ 1, with E(U0 | X ,Z ) = 0.
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The test statistic for scalar responses Behavior under the alternatives

We show that such directional alternatives can be detected as
soon as r2

n nh(k+1)/2/αn tends to infinity.

However, in the functional data framework, to obtain the
convenient standard normal critical values, we need
1/αn = o(p−3/2 ln−1 n).

Hence, the rate rn at which the alternatives H1n tend to the null
hypothesis should satisfy r2

n nh(k+1)/2/{p3/2 ln n} → ∞.
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The test statistic for scalar responses Behavior under the alternatives

Testing the functional linear model

Simplify and consider the case with no covariate Z

The model we want to test is the functional linear model defined by

Y = a + 〈b,X 〉+ U,

where b ∈ L2[0,1] and a ∈ R are unknown parameters.

The null hypothesis is

H0 : E (U|X ) = 0 a.s.
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The test statistic for scalar responses Behavior under the alternatives

Let b̂ ∈ L2[0,1] denote a generic estimator of the slope b and let

â = Y n −
∫ 1

0
b̂(t)X n(t)dt = a−

∫ 1

0
{b̂(t)− b(t)}X n(t)dt + Un,

where Un = n−1∑n
i=1 Ui .

Let Ûi = Yi − â− 〈b̂,Xi〉 be the residuals and let

Qn(γ; â, b̂) =
1

n(n − 1)

∑
1≤i 6=j≤n

ÛiÛj
1
h

Kh
(
〈Xi − Xj , γ〉

)
, γ ∈ Sp,

where v̂2
n (·; â, b̂) is an estimate of the variance of nh1/2Qn(·; â, b̂).

Given Bp ⊂ Sp, let

γ̂n = arg max
γ∈Bp

[
nh1/2Qn(γ; â, b̂)/v̂n(γ; â, b̂)− αnI{γ 6=γ(p)0

}] .
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The test statistic for scalar responses Behavior under the alternatives

The test statistic is then

Tn = nh1/2 Qn(γ̂n; â, b̂)

v̂n(γ̂n; â, b̂)
.

Suppose
‖b̂ − b‖L2 = OP(n−ρ) for some 3/8 < ρ ≤ 1/2

The bandwidth h is such that n1−2ζh1/2 → 0 for some 3/8 < ζ < ρ.

Under some stronger moment conditions, we show that an
asymptotic α-level test is given by I (Tn ≥ z1−a), where za is the
(1− a)−quantile of the standard normal distribution.
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The test statistic for scalar responses Behavior under the alternatives

Consistency

The alternatives of the functional linear model considered are

H1n : Yin = a+〈b,Xi〉+rnδ(Xi)+U0
i , n ≥ 1, with E(U0

i | Xi) = 0, 1 ≤ i ≤ n,

with δ(·) an real-valued function such that 0 < E[δ4(X )] <∞ and
rn, n ≥ 1 a sequence of real numbers.

Moreover, δ(·) satisfies the orthogonality conditions

E[δ(X )] = 0 and E[δ(X )X ] = 0.
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The test statistic for scalar responses Behavior under the alternatives

Assume that
(i) r2

n nh1/2/αn →∞;
(ii) r−1

n ‖b̂ − b‖L2 = oP(1);
(iii) αn/{p3/2 ln n} → ∞.

Then the test based on Tn functional linear regression model with
probability tending to 1 (under some mild conditions).
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Extending the principle: functional responses
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Extending the principle: functional responses

The fundamental Lemma

Lemma

Let U,X ∈ L2[0,1] be random functions and Z ∈ Rk be a random
vector. Assume that E‖U‖ <∞ and E(U) = 0.
(A) The following statements are equivalent:

E(U | X ,Z ) = 0 a.s.

E [〈U,E (U | 〈X , γ〉,Z )〉] = 0 a.s. ∀p ≥ 1, ∀γ ∈ Sp.

(B) Under some mild additional conditions, if P[E(U | X ,Z ) = 0] < 1,
then there exists a positive integer p0 such that for any integer p ≥ p0,
the set

A = {γ ∈ Sp : E(U | 〈X , γ〉,Z ) = 0 a.s. }

has Lebesgue measure zero on the unit hypersphere Sp.
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Extending the principle: functional responses

The test statistic (1/2)

For γ ∈ Sp define

Qn (γ) =
1

n(n − 1)hk+1

∑
1≤i 6=j≤n

〈Ui ,Uj〉K
(
〈Xi − Xj , γ〉/h

)
K̃
(
(Zi − Zj)/h

)
,

Let

v̂2
n (γ) =

2
n(n − 1)hk+1

∑
j 6=i

〈Ui ,Uj〉2K 2 (〈Xi − Xj , γ〉/h
)

K̃ 2 ((Zi − Zj)/h
)

Given Bp ⊂ Sp, the least favorable direction γ for H0 is defined by

γ̂n = arg max
γ∈Bp

[
nh(k+1)/2Qn(γ)/v̂n(γ)− αnI{γ 6=γ(p)0

}] ,
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Extending the principle: functional responses

The test statistic (2/2)

The test statistic is
Tn = nh1/2 Qn(γ̂n)

v̂n(γ̂n)
. (4)

We will show that an asymptotic α-level test is given by
I (Tn ≥ z1−α), where z1−α is the (1− α)-th quantile of the
standard normal distribution.
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Numerical illustrations
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Numerical illustrations

The simulation design (1/2)

X is a standard Brownian motion on the unit interval [0,1].
Three scenarii for the distribution of Ui :

Null hypothesis U is N(0, σ2) where σ = 1.219, U independent of X .
Linear alternative

Ui = 〈b,Xi〉+ εi

where b(t) = (sin(2πt3))3, and ε1, . . . , εn are i.i.d. N(0, σ2), where
σ = 1.219, corresponding to a 10% signal-to-noise ratio that is,
E(〈b,X 〉2)/(E(〈b,X 〉2) + σ2) = 0.1.
Quadratic alternative

Ui =

∫ 1

0

∫ 1

0
h(s, t)X (s)X (t)ds dt + εi

where h(s, t) = 0.6, and ε1, . . . , εn are i.i.d. N(0, σ2), where σ = 1.
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Numerical illustrations

The simulation design (2/2)

We use the Karhunen-Loève expansion of the Brownian motion X

X (t) =
∞∑

j=1

xj
1

(j − 0.5)π

√
2 sin ((j − 0.5)πt)

to build the basis R = {
√

2 sin((j − 0.5)πt) : j = 1,2, . . . }
1000 samples of (U1,X1), . . . , (Un,Xn) of sizes n = 100 and
n = 200
αn = 5, Epanechnikov kernel K , several bandwidth values tested
Critical values corrected by wild bootstrap
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Numerical illustrations

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 5.9 4.8 4.7 5.8 5.6 5.6 5.1 6.6

v̂2
n 7.3 6.1 5.7 5.8 7.9 6.5 5.6 6.6

n = 200 τ̂2
n (γ) 4.1 5.0 5.4 4.9 4.5 4.9 4.7 5.5

v̂2
n 5.7 5.9 5.6 4.9 5.7 5.8 5.5 5.5

Table: Percentage of rejections under H0, nominal level 5% (‘best’ direction).

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 4.9 4.9 5.0 5.8 5.0 4.9 4.5 6.6

v̂2
n 7.1 6.4 5.9 5.8 7.5 6.1 5.4 6.6

n = 200 τ̂2
n (γ) 5.0 5.2 5.1 4.9 5.1 4.5 4.9 5.5

v̂2
n 6.3 6.2 6.0 4.9 5.9 5.5 5.4 5.5

Table: Percentage of rejections under H0, nominal level 5% nominal level 5%
(‘worst’ direction).
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Numerical illustrations

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 47.5 47.8 43.6 79.1 47.7 48.6 43.3 72.4

v̂2
n 49.3 51.6 47.0 79.1 49.2 51.7 47.3 72.4

n = 200 τ̂2
n (γ) 83.0 83.5 81.8 98.0 78.9 83.5 82.9 96.5

v̂2
n 84.4 85.7 84.2 98.0 81.1 84.7 85.7 96.5

Table: Percent. rejections under the linear altern., level 5% (‘best’ direction).

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 24.0 21.7 17.9 79.1 28.5 22.7 17.1 72.4

v̂2
n 33.8 29.4 24.1 79.1 40.9 33.0 25.0 72.4

n = 200 τ̂2
n (γ) 52.8 52.4 49.3 98.0 66.3 59.7 52.9 96.5

v̂2
n 59.2 58.6 55.2 98.0 72.5 65.8 59.3 96.5

Table: Percent. rejections under the linear altern., level 5% (‘worst’ direction).
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Numerical illustrations

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 19.1 21.9 23.1 8.6 18.2 21.7 23.1 8.1

v̂2
n 23.4 26.0 27.1 8.6 22.6 25.6 27.2 8.1

n = 200 τ̂2
n (γ) 34.4 40.5 47.9 7.6 30.6 39.5 42.8 6.9

v̂2
n 39.6 44.3 47.9 7.6 36.6 42.9 47.4 6.9

Table: Percent. reject under the quadratic altern; γ(p) = (1,0, · · · ).

p = 3 p = 5
ch = 0.6 ch = 0.8 ch = 1.0 CT ch = 0.6 ch = 0.8 ch = 1.0 CT

n = 100 τ̂2
n (γ) 12.9 11.9 10.6 8.6 18.4 13.6 12.4 8.1

v̂2
n 19.4 16.0 14.6 8.6 25.4 19.8 16.5 8.1

n = 200 τ̂2
n (γ) 25.7 25.4 24.7 7.6 37.7 36.2 30.8 6.9

v̂2
n 30.4 29.4 28.0 7.6 42.1 39.1 33.7 6.9

Table: Percentage of rejections under the quadratic alternative;
γ(p) = (0,1,0, · · · ).
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Numerical illustrations

Testing the linear model vs. quadratic alternative
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Numerical illustrations

Testing the linear model vs. cubic alternative
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Numerical illustrations

Testing the quadratic model vs. cubic alternative

The simulated model

Y = a+
∫ 1

0
b(t)X (t)dt +

∫ 1

0

∫ 1

0
h(s, t)X (s)X (t)ds dt +δc(X )+U0

with b(t) = 1 for all t ∈ [0,1], and h(s, t) = 0.6 for all s, t ∈ [0,1]

The cubic alternative

δc(X ) = d

(∫ 1

0

∫ 1

0

∫ 1

0
X (s)X (t)X (z)ds dt dz −

∫ 1

0
X (t)dt

)

where d = 0 under the null and d = 0.9 under the alternative.
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Numerical illustrations

Testing the quadratic model vs. cubic alternative
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Figure: Testing the functional quadratic model versus a cubic alternative.
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Numerical illustrations

Real data application

Use Tecator data set. The task is to predict the fat content of a
meat sample on the basis of its near infrared absorbance
spectrum.
Test linear functional model and quadratic functional model
Both models are rejected

FIG. 1. Sample of 204 absorbance spectra for meat specimens.

Figure: Testing the functional quadratic model versus a cubic alternative.
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Numerical illustrations

Linear model Quadratic model
h 0.18 0.30 0.44 0.59 0.18 0.30 0.44 0.59

p = 2 m = 1 0.5 0.4 0.2 0.6 2.4 1.4 1.6 3.3
m = 2 0.2 0.0 0.0 0.3 0.6 0.3 0.0 0.7
m = 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p = 3 m = 1 0.0 0.0 0.2 0.2 0.0 0.1 0.1 0.0
m = 2 0.0 0.0 0.0 0.1 0.2 0.0 0.1 0.0
m = 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1. p-values (in percentages) obtained by applying the new test to the
Tecator data set.
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Conclusions

Conclusions and possible esxtensions

A smoothing based goodness-of-fit test with hybrid (functional and
finite-dimension) data

Test the effect on the covariates on the response
Check parametric functional regression (linear, quadratic,
quantile,...)

The asymptotic critical values are standard normal; wild bootstrap
is needed for small sample sizes
It detects nonparametric alternatives
Mild conditions on the law of the covariates
The response/errors could be heteroscedastic
Several extensions are possible

dependent observations (once CLT and concentration inequalities
for U−processes are available)
testing significance of covariates in functional nonparametric
regression

V. Patilea (CREST-Ensai, France) FDA SuSTaIn Workshop, 2012 48 / 51



Conclusions

Some References (1/2)

CARDOT, H., GOIA, P., AND SARDA, P. (2004). Testing for no effect in functional
linear regression models, some computational approaches. Communications in
Statistics - Simulation and Computation 33, 179–199.
CHEN, D., HALL, P., MÜLLER, H.G. (2011). Single and multiple index functional
regression models with nonparametric link. Annals of Statistics 39, 1720–1747
CRAMBES, C., KNEIP, A., AND SARDA, P. (2008). Smoothing splines estimators
for functional linear regression. Annals of Statistics 37, 35–72.
DELSOL, L., FERRATY, F., AND VIEU, P. (2011). Structural test in regression on
functional variables. Journal of Multivariate Analysis 102, 422–447.
FERRATY, F. (Ed.) (2011). Recent Advances in Functional Data Analysis and
Related Topics. Springer-Verlag Berlin Heidelberg.
GARCÍA-PORTUGUÉS, E., GONZÁLEZ-MANTEIGA, W., AND FEBRERO-BANDE,
M. (2012) A goodness-of-fit test for the functional linear model with scalar
response. arXiv:1205.6167v3 [stat.ME]
HALL, P., AND HOROWITZ, J.L. (2007). Methodology and convergence rates for
functional linear regression. Annals of Statistics 35, 70–91.

V. Patilea (CREST-Ensai, France) FDA SuSTaIn Workshop, 2012 49 / 51



Conclusions

Some References (2/2)

HORVÀTH, L., AND REEDER, R. (2011). A test of significance in functional
quadratic regression. arXiv:1105.0014v1 [math.ST].

MAJOR, P. (2006). An estimate on the supremum of a nice class of stochastic
integrals and U-statistics. Probability Theory and Related Fields 134, 489–537.

MÜLLER, H.G. AND STADTMÜLLER, U. (2005). Generalized functional linear
models. Annals of Statistics 33, 774–805.

RAMSAY, J., AND SILVERMAN, B.W. (2005). Functional Data Analysis (2nd ed.).
Springer-Verlag, New York.

YAO, F., AND MÜLLER, H.G. (2010). Functional quadratic regression. Biometrika
97, 49–64.
ZHENG, J.X. (1996). A consistent test of functional form via nonparametric
estimation techniques. J. Econometrics 75, 263–289.

V. Patilea (CREST-Ensai, France) FDA SuSTaIn Workshop, 2012 50 / 51



Conclusions

Manuscripts available on arXiv

PATILEA, V., SÁNCHEZ-SELLERO, C., AND SAUMARD, M. (2012).
Projection-based nonparametric goodness-of-fit testing with functional
covariates. arXiv:1205.5578 [math.ST]

PATILEA, V., SÁNCHEZ-SELLERO, C., AND SAUMARD, M. (2012). Nonparametric
testing for no-effect with functional responses and functional covariates.
arXiv:1209.2085 [math.ST]

V. Patilea (CREST-Ensai, France) FDA SuSTaIn Workshop, 2012 51 / 51


	Introduction
	The statistical problem

	The principle: scalar responses case
	The test statistic for scalar responses
	Behavior under the null
	Behavior under the alternatives

	Extending the principle: functional responses
	Numerical illustrations
	Conclusions

