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Practical problem: exploring relationship 
among Romance languages 

Italian 
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American Spanish  

Spanish 

Portuguese 
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Until now, only textual 
comparisons between 

words have been 
considered 

 

“um” 

“uno” 

“uno” 

“un” 

“uno” 

This neglects pronunciation completely !! 

Italian 

French 

American Spanish  

Spanish 

Portuguese 

Practical problem: exploring relationship 
among Romance languages 
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Linguistic experts provide the log spectrogram of speech records for a sample of 

people of different languages…  (courtesy of Prof. J. Coleman, Phonetic 

Laboratory, University of Oxford; preprocessing by P. Hadjipantelis, University of 

Warwick) 
Example: French speaking people, word ‘One’  

T
im

e
  

0.2 

0.4 

0.6 

0.9 

  
  
L

o
g

a
ri

th
m

 o
f 
 s

o
u

n
d

 i
n

te
n

s
it
y
  

Frequency 



 Davide Pigoli, davide.pigoli@mail.polimi.it 

Distance-based Statistics for Covariance Operators 

• Significant phonetic features of the language are caught by relationships   

  among different frequencies. 

 

 

 

• Working hypothesis: existence of a language frequency structure, common to all  

                                    people. 

 

 

 

• Different time instants as a sample from the same covariance operators population. 

 

But how dealing with this large amount of information? 
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From individual curves to Language  frequency covariance  
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How can we deal with these 

covariance operators? 

From individual curves to Language  frequency covariance  
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The focus is therefore on the covariance operator 

 

 

 

 

 

where                                       is a functional random variable.   

 

 How can we measure distance between covariance operators? 

 

 Can we develop inferential techniques based on the chosen distance? 
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For every compact operator T, a canonical decomposition exists: 

Scalar 

product 

where             ,            are two orthogonal bases for  

Singular 

values 

Some properties of  covariance operators in Hilbert spaces 

[see, e.g.,  Zhu, 2007 ] 
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For a self-adjoint compact operator T, an orthogonal basis             exists, so that : 

Eigenvalues 

Some properties of  covariance operators in Hilbert spaces 
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For a self-adjoint compact operator T, an orthogonal basis             exists, so that : 

Eigenvalues 

A compact operator T is said to be trace class if 

for an orthonormal basis           

 

(trace value does not depend on the choice of the basis) 

Some properties of  covariance operators in Hilbert spaces 
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For a self-adjoint compact operator T, an orthogonal basis             exists, so that : 

Eigenvalues 

A compact operator T is said to be Hilbert – Schmidt if 

Some properties of  covariance operators in Hilbert spaces 
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For a self-adjoint compact operator T, an orthogonal basis             exists, so that : 

Eigenvalues 

A compact operator T is said to be Hilbert – Schmidt if 

Covariance operator C(s,t) is a self- adjoint trace class operator on               , 

 

                                                if   

Some properties of  covariance operators in Hilbert spaces 
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Square root Distance   

This generalizes to the operatorial case the metric proposed by Dryden et al., 

2009, for positive definite matrices.  

where 
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where                       and                        is the space of unitary operators R, such 

  

that                                              .    

It allows unitary transformations between operators  

Procrustes size and shape Distance   
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where                       and                        is the space of unitary operators R, such 

  

that                                              .    

It allows unitary transformations between operators  

Procrustes size and shape Distance   

Remark: 
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where                       and                        is the space of unitary operators R, such 

  

that                                              .    

It allows unitary transformations between operators  

Procrustes size and shape Distance   

Proposition 1: it is minimized  for the unitary operator          defined by    

where        ,        come from the SVD    

Remark: 
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where                       and                        is the space of unitary operators R, such 

  

that                                              .    

It allows unitary transformations between operators  

Procrustes size and shape Distance   

Remark: 

Proposition 2:  

where          are singular values of the operator  
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Other distances are not suitable… 

For example all distance based on the product               

 

 

 

 

are not well defined, since covariance operators on               are not 

invertible. 

(since                                                  )  
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Averaging of covariance operators 

The need of averaging among covariance operators arises in many 

applications. In a finite dimensional setting,  a possible estimator is 

where S1, … , Sg  are the covariance operators of the g groups with 

n1,…,ng observations each.                              

This minimizes the sum of square Froebenius distance 
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It depends on the 

choice of distance d(.,.) 

We can therefore define a Frechét average for  S1, … , Sg minimizing the 

appropriate distance: 
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It depends on the 

choice of distance d(.,.) 

We can therefore define a Frechét average for  S1, … , Sg minimizing the 

appropriate distance: 
 

Square root Distance: we proved that 

n1 +…+ ng 

Procrustes Distance: the minimum can be found using an iterative procedure, 

inspired by the algorithm proposed in Gower, 1975, for the matrix case.    
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Procrustes Averaging: 

Step 1: For each group, compute the unitary operator            that minimizes 

 

 

 

 

              where                                       and     

Initialization:    

Step 2:  Compute the average on the transformed operators                                    

   

Step 3:  Iterate steps 1-2 until convergence 
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Example: French Language, word ‘One’  
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Frechét  averaging 

 

(Square root distance) 
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Estimates obtained with Square root distance for word ‘One’  
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Italian Porto 
America

n 

Spanish 

Iberian 

Spanish 

Distance matrix among languages (Square root distance) 
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Distance matrix among languages (Procrustes distance) 
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Map suggested by linguistic knowledge  

(Prof. John Coleman, personal communication):   

Shortest path connecting covariance operators: 



 Davide Pigoli, davide.pigoli@mail.polimi.it 

Distance-based Statistics for Covariance Operators 

Geodesic extrapolation: Square Root Distance 
Geodesic passing through 

American Spanish and Iberian 

Spanish covariance operators 

Extrapolated covariance operator for                                  Portuguese Covariance 

operator 
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Geodesic extrapolation: Procrustes Distance 
Geodesic passing through 

American Spanish and Iberian 

Spanish covariance operators 

Extrapolated covariance operator for                                  Portuguese Covariance 

operator 
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Conclusions 

• Novel distances for the comparison of infinite dimensional covariance operators 

have been illustrated. 

 

• Estimators for the average covariance operator have been proposed. 

 

• Covariance operator among frequency catches significant feature in human 

languages.  

 

• Phonetic structure highlights that Portuguese language behaves differently from 

other languages. 

Future perspectives: 

• Hypothesis testing             distance–based permutation procedure  

• Multi-words analysis 
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