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Example 1: Dose-response study

Background: Patient with renal failure need to take drug e.g.
Darbepoetin Alpha (DA) to control haemoglobin (Hb) level in a
certain range.

Objective: how to determine a suitable level of dose and others to
control Hb level.

Functional Response y(t): Hb level, measured at different time
points.

Two types of covariates:
◮ Functional covariates x(t): including e.g. x1(t)–dose level; x2(t)–time

taking the drug; x3(t)–iron dose.
◮ Subject based scalar covariates u: including e.g. age, weights, gender.
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Example 1: Dose-response study

Modeling: how to find a functional regression model
ym(t) = fm(x(t),u) + ǫm(t) where f is usually unknown
(non-parametric? nonlinear?).

Prediction: based on all the up-to-date information for a particular
patient and a given dose level, predict Hb level in the next
month–dose-response curve.

Patient-specific treatment regime: individual dose-response curve
(prediction of Hb level against dose level).

Data: there are only a few observations (13) for each of many
subjects (near 200, can have more...).
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Example 2: Standing-up manoeuvre of unilateral amputee
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Example 2: Standing-up manoeuvre of unilateral amputee

Output y(t):
Body state eg
Cbd position or
joint angles (e.g.
ANtk: trunk
angle).

Input x(t):
measurements of
accelerations and
angular velocities
(30 variables).

Objective: Use
input variables
x(t) to predict
y(t).
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Modelling standing-up manoeuvres of unilateral amputee:
Output CBD-x
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Modelling standing-up manoeuvres of unilateral amputee:
Output CBD-z
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Modelling standing-up manoeuvres of unilateral amputee:
One of input variables accy5
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Introduction: nonparametric functional regression model

To find f such that

ym(t) = fm(x1(t), x2(t), · · · , xQ(t);u) + ǫm(t)

Possible methods for modelling and prediction

If Q is small, e.g. Q = 1 or 2, most of conventional methods can be
used (e.g. Spline smoothing, local polynomial models).

If Q is large, the conventional methods suffer from curse of
dimensionality. Alternative methods include

◮ Additive model (Breiman and Friedman, 1985; Hastie and Tibshirani,
1990).

◮ Varying coefficient model (Hastie and Tibshirani, 1993; Fan and
Zhang, 1999).

◮ Dimension reduction methods: projection pursuit, sliced inverse
regression, single index model.

◮ Neural Network model (Cheng and Titterington, 1994, Neal 1996);
◮ Gaussian process regression (GPR) model
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Gaussian process prior for a single curve

y = f (x) + ǫ.

f (·) – mapping x ∈ RQ to y ∈ R. It is unknown.
Define a Gaussian process prior for f (·):

◮ The prior of f (·) is a Gaussian process with zero mean and kernel
covariance K (·, ·).

◮ Covariance structure: Cov(f , f ′) = K (x, x
′

).
Features

◮ It provides a flexible nonlinear model;
◮ x could be large-dimensional;
◮ Need to select a parametric covariance kernel, for example the

following covariance function (squared exponential + linear).

K (x, x′;θ) = v1 exp

(

−
1

2

Q
∑

q=1

wq(xq − x ′q)
2

)

+

Q
∑

q=1

aqxqx
′

q.

where θ = (v1,w1, . . . ,wQ , a1, . . . , aQ) – hyper-parameters or tuning
parameters.
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GPR for a single curve: inference

How to choose the values of hyper-parameters θ?
◮ GCV (only if the dimension of θ is very small)
◮ Empirical Bayesian approach: MAP
◮ Fully Bayesian: assume a hyper-prior for θ and then use MCMC.

A GPR model is generally formulated as

yi |fi
ind
∼ g(fi ) and

(f1, . . . , fn) ∼ GP(0, k(·, ·;θ)),

If
yi |fi

ind
∼ N(fi , σ

2
ǫ ),

the marginal distribution of yi is still a normal distribution.

In general,

p(y|θ) =

∫

p(y|f)p(f|θ)df.

Implementing/computing issues: http://www.gaussianprocess.org/
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GPR: asymptotic results – posterior consistency

Theorem

(Choi, 2005) Let P0 denote the joint conditional distribution of {Yn}
∞
n=1

given the covariate assuming that f0 is the true response function.
Suppose that the values of the covariate in [0, 1] are fixed, i.e., known
ahead of time. Then for every ǫ > 0,

Π
{

f ∈ W C
ǫ,n|D

}

→ 0 a.s. [P0]. (1)

The neighbourhood is defined as

Wǫ,n =

{

(f , σ) :

∫

|f (x)− f0(x)|dQn(x) < ǫ,

∣

∣

∣

∣

σ

σ0
− 1

∣

∣

∣

∣

< ǫ

}

.
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GPR: asymptotic results – information consistency

K-L distance: D[p‖q] =
∫

(log p − log q)dP .

Lower bound of D[P(y1, . . . , yn|f0)‖Pbs(y1, . . . , yn)],

D[P(y1, . . . , yn|f )‖Pbs(y1, . . . , yn)] ≤
1

2
‖f ‖2K +

1

2
log |In + cK|, (2)

◮ ‖f ‖K is the RKHS norm of f , and c is a certain constant.
◮ Pbs(y1, . . . , yn) – a Bayesian GP prediction strategy based on n

observations.

Pbs(y
∗|D) =

∫

pf (y
∗)dΠ(f |D), here y∗ is a future observation.

Thus the expected KL divergence between Pbs(y
∗|D) and Pbs(y

∗|f0)
converges to zero as the sample size increases (Seeger, et al. 2008).
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Models for repeated curves (batch data)

ym(x, t) = fm(x, t,u) + ǫm(t),m = 1, . . . ,M

If input covariates are scalar, a linear functional regression model
(Ramsay and Silverman, 1997) is defined as

fm(t) = µm(t) = um
′β(t).

Model both mean and covariance structure (Rice and Silverman,
1991)

fm(t) = µm(t) + τm(t),

τm(t) is a stochastic process with zero mean and covariance function
C (t, t ′) = Cov(y(t), y(t ′)). Note that t is one-dimensional.

Gaussian process functional regression (GPFR) model (Shi et al.
2007):

fm(x, t) = µm(t) + τm(x).
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GPFR models for batch data

We define a Gaussian Process Functional Regression model as follows:

ym(x, t) = µm(t) + τm(x) + ǫm, m = 1, . . . ,M,

where

τm(x) ∼ GP (0, k(x, x′|θ)),
x(t) is functional, giving the values of input at each data point.

If we take µm(t) = um
′β(t), then ym(t, x) can be decomposited by

ym(x, t) = um
′β(t) +

∑

j

φj(x)γj + ǫm

where φj(x) is the eigenfunction for covariance function K (·, ·) and
γj ∼ N(0, λj).
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GPFR: estimation

ym(t, x) = um
′β(t) + τm(x) + ǫm

β(t): B-spline approximation:

β(t) = BΦ(t).

Estimate the unknown parameters B involved in mean structure and
θ involved in covariance structure:

◮ MLE (or MAP): an iterative procedure is used to update B and θ

respectively at each iteration.
◮ A simple two-stage method:

⋆ Stage one: Use least square to estimate B without assuming any

covariance structure.
⋆ Stage two: Use MLE to estimate θ using the mean estimated in Stage

one.

◮ MCMC.
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GPFR: prediction – interpolation and extrapolation

Training data D includes observations in the first M batches and N
observations in the (M + 1)-th batch {yM+1,i , i = 1, . . . ,N}.

To predict y∗ at a new test data point t∗ in the (M + 1)-th batch
with the test inputs x∗ = x(t∗).

The prediction and the predictive variance of y∗ are

ŷ∗M+1 = µ̂M+1(t
∗) +H

′

(yM+1 − µ̂M+1(t)),

σ̂∗2M+1 = σ̂∗2GP

(

1 + u
′

M+1(U
′

U)−1uM+1

)

.
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GPFR: prediction for a completely new curve
Predict y∗ for a new test input x∗ at t∗ in a new batch

Using mean model: ŷ∗M+1 = µ̂M+1(t
∗);

Using both mean and covariance models:
◮ If the new batch is the same as batch m, and obtain ŷ∗

m and σ̂∗2
m .

◮ Assume that

P(the new batch belongs to batch m) = wm,

⋆ the prediction can be calculated

ŷ
∗

=

M
∑

m=1

wmŷ
∗

m,

⋆ The predictive variance is

σ̂
∗2

=

M
∑

m=1

wmσ̂
∗2
m +

(

M
∑

m=1

wmŷ
∗2
m − ŷ

∗2

)

.

◮ wm may be modelled by a ‘spatially indexed’ model (Shi and Wang
2008).
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GPFR models for batch data
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Dashed line: the real curve
for a subject

Features

The mean structure models
the solid line: the structure
is learnt by borrowing
information from other
subjects.

If no data is collected for the
(M + 1)−th subject,

ŷ∗M+1 = µ̂M+1(t
∗)

It is a consistent estimator
of the common mean (solid
line).
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GPFR models for batch data
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Features

Usually some data is collected:
ŷ∗M+1 would be

µ̂M+1(t
∗) +H

′

(yM+1 − µ̂M+1(t)).

When the sample size is sufficiently
large, the above prediction is a
consistent estimate of fM+1 (dashed
line).

Improve the fitting and prediction
dramatically.

It is very useful in applications, e.g.,
construct individual dose-response
curve and thus enable for
patient-specific treatment regime.
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GPFR: Simulation study for batch data

The true model used to generate the data is
ym(x) = um + sin(0.5x)3 + τm,

x = xi for i = 1, . . . ,Nm is generated in (-4,4);

{τm} is a Gaussian process with zero mean and covariance function

C (xi , xj) = v0 exp

(

−
1

2
w0(xi − xj)

2

)

+ σ0δij ,

with v0 = 0.1, w0 = 1.0 and σ0 = 0.0025;

um takes value from {−1, 0, 1}.
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GPFR: Simulation study for batch data: data
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Figure: The sample curves. (a) Solid line—the true mean curve; dotted line—the
curve with random errors; dashed line—the curve with errors having GP
covariance structure depending on x . (b) 30 sample curves with GP errors.
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GPFR: Simulation study–Interpolation
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Figure: Training data: 30 curves + 50 data points randomly selected from whole
range. Left: GPFR, Middle: Mean model and Right: GPR

Both GPFR and GPR give very precise results
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GPFR: Simulation study–Extrapolation
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Figure: Training data: 30 curves + 50 data points randomly selected from [-4,0].
Left: GPFR, Middle: Mean model and Right: GPR

GPR: Good when ’close to’ training data, BUT deteriorated very
rapidly when move away.

GPFR: very good when ’close to’ training data; performance of GPFR
will tend to close to LFR when moving away from the training data.

GPFR is particular useful in multiple-step-ahead forecasting
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GPFR: Simulation study–prediction

Table: The average values of rmse and r between true and predicted responses
from simulation study

Model Interpolation Extrapolation

rmse r rmse1 r rmse2 rmse3

GPFR 0.0588 0.9954 0.2802 0.9270 0.1321 0.3116
LFR 0.3244 0.9068 0.3318 0.9143 0.2874 0.3352
GPR 0.0830 0.9911 0.6044 0.1246 0.2271 0.6843
1 The overall rmse in range [0,4]
2 The rmse in range [0,1]
3 The rmse in range [1,4]
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GPFR: Leeds Renal Data –individual dose-response curves
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Figure: Renal data: Hb response for different dose level (drug D)
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Gaussian process regression model for a single curve

y = f (x) + ǫ.

f (·) ∼ GPR(x|k(·, ·);

k(·, ·;θ) covariance kernel/function, depending on x;

Q – could be large dimensional;

What if Q is very large, or even Q >> n?
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GPR: variable selection

Choose values of hyper-parameters θ by empirical Bayesian learning:

p(θ|D) ∝ p(y|θ)p(θ)

◮ MAP: choose θ̂ by maximising p(θ|D).

Variable selection when Q is very large, for e.g.

K (x, x′;θ) = v1 exp



−
1

2

Q
∑

q=1

wq(xq − x ′q)
2



 .

◮ Hard threshold or ARD (Automatic Relevance Determination): remove
those variables with small ’w ’ values.

◮ Subset selections and PCA (Chen et al., 2007).
◮ Penalized techniques (Yi et al. 2011).
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Penalized GPR: idea

K (x, x′;θ) = v1 exp



−
1

2

Q
∑

q=1

wq(xq − x ′q)
2



 .

Empirical Bayesian learning - choose the values of hyper–parameters
by maximize the marginal pdf, or

θ̂ = argmin
θ

[−ln(θ;D)] .

Penalized GPR: penalize wq’s by minimizing

lp(θ;D, λn) = −
1

n
ln(θ) +

Q
∑

q=1

Pλn
(wq).
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Penalized GPR: LASSO PGPR

LASSO PGPR: to minimize

lp(θ;D, λn) = −
1

n
ln(θ;D) +

Q
∑

q=1

Pλn
(wq)

where Pλn
(wq) = λn|wq|.

Algorithm

◮ Given λn, θ̂ = argminθ

[

− 1
n
ln(θ;D) + λn

∑Q
q=1 |wq|

]

.

◮ Some ŵq’s are equal to zero.
◮ Select the optimal λn by GCV.
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Penalized GPR: other penalty functions

To minimize

lp(θ;D, λn) = −
1

n
ln(θ;D) +

Q
∑

q=1

Pλn
(wq)

Ridge penalty: Pλn
(wq) = λnw

2
q .

◮ cannot be used for variable selection.

Bridge penalty: Pλn
(wq) = λnw

γ
q , (0 < γ < 1).

◮ Need to select two tuning parameters λn and γ by GCV.

Adaptive LASSO PGPR : pλn
(|w |) = λn

∑Q
q=1 ψq|wq|.

◮ Zou (2006) constructs the weight vector as ψ̂q = 1/ŵγ

q for γ > 0.
◮ There are two tuning parameters: λn and γ.
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Penalized GPR: other penalty functions

To minimize

lp(θ;D, λn) = −
1

n
ln(θ;D) +

Q
∑

q=1

Pλn
(wq)

SCAD penalty:

pλn
(|w |) =











λ|w | if |w | ≤ λn,

− |w |2−2aλn|w |+λ2
n

2(a−1) if λn < |w | ≤ aλn,
(a+1)λ2

n

2 if |w | > aλn.

where a > 1.
◮ There are two tuning parameters: λn and a.
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Penalized GPR: comparisons

SCAD, Adaptive LASSO and Bridge PGPR achieve some nice
asypmptotic properties (e.g. sparsity), but the computation in GCV is
very heavy.

Numerically, SCAD, Adaptive LASSO and ridge PGPR achieved better
results than others when the input variables are highly correlated.
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Selection of Grouped Variables - Elastic NET PGPR

To select variables which are naturally grouped (highly correlated) -
Elastic NET PGPR:

lp(θ;D, λ1, λ2) = −
1

n
ln(θ;D) + λ1

Q
∑

q=1

|wq|+ λ2

Q
∑

q=1

w2
q .

Elastic NET is constructed by adding LASSO and Ridge penalties
together.

Thus can achieve the advantages of both penalties.

Advantage: select naturally grouped variables.

Disadvantage: double bias from both Ridge and LASSO penalties.
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Selection of Grouped Variables - other NET penalties

SCAD net:

lp(θ;D, a, λ1, λ2) = −
1

n
ln(θ) + λ1

Q
∑

q=1

Pλ1,a(wq) + λ2

Q
∑

q=1

w2
q .

◮ Has the properties of both SCAD and Ridge penalties.
◮ Select variables which are naturally grouped with less bias than the

Elastic NET PGPR.

Bridge NET:

lp(θ;D, a, λ1, λ2) = −
1

n
ln(θ) + λ1

Q
∑

q=1

wγ
q + λ2

Q
∑

q=1

w2
q

.
◮ Has the properties of both Bridge and Ridge penalties.
◮ Select variables which are naturally grouped with less bias than the

Elastic NET PGPR.
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Examples - Prostate Cancer Data

Response variable: log(prostate-specific antigen). 8 input variables:
age, log(cancer volumn) etc.

Training data: 67 observations. Test data: 30 observations.

Methods Used Tuning Parameter RMSE-PredVar Variables Selected
OLE (Linear) 0.586 (0.184) All
Ridge (Linear) λn = 1 0.566 (0.188) All
Lasso (Linear) s = 0.39 0.499 (0.161) (1,2,4,5,8)
MLE (GPR) 0.495 (0.073) All
Ridge (GPR) λn = 1.7 0.471 (0.061) All
LASSO (GPR) λn = 0.06 0.464 (0.057) (1,2,3,4,5,7,8)
Bridge (GPR) γ = 0.1, λn = 0.05 0.415 (0.025) (1,2,5)
SCAD (GPR) a = 3.7, λn = 1.8 0.453 (0.034) (1,2,4,5,8)
Adap. LASSO (GPR) γ = 0.8, λn = 0.18 0.413 (0.025) (1,2,5)
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Examples - Meat Fat Data using near infrared
spectroscopy (NIRS)
Response variable: fat contents. 100 input variables: measurement of the
absorption with different wavelength – highly correlated. training data:
172. Test data: 43.

RMSE Number of Variables Selected
PCR 2.855 All
PLS 2.560 All
QPLS 0.995 All
Neural Network 1.418 All
10-6-1 Network,early stopping 0.65 10
10-3-1 Network, Bayesian 0.52 10
13-X-1 Network, Bayesian ARD 0.36 13
GPR(MLE) 0.89 All
GPR(Ridge) 0.711 All
GPR(LASSO) 0.649 26
GPR(Bridge) 0.432 4
GPR(SCAD) 0.5297 15
GPR(Adaptive LASSO) 0.3901 3
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Examples - Paraplegia Standing-up Data

Response varialbe: vertical trajectory of the body centre of mass. Input
variables: 33.

RMSE Pred Var No. of Var Sel Tuning Parameters
GPR(Hard) 16.3034 46.0874 6 N/A
GPR(Ridge) 12.5814 32.5563 N/A λn = 0.01
GPR(LASSO) 12.1583 46.4524 11 λn = 0.00002
GPR(Bridge) 9.6093 23.6331 5 γ = 0.01, λn = 0.8
GPR(AdLASSO) 78.8941 36.6152 2 γ = 0.5, λn = 0.08
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Asymptotic Theories

an = max
{

P ′
λn
(w

(0)
q ) : q ∈ A

}

, bn = max
{

P ′′
λn
(w

(0)
q ) : q ∈ A

}

.

Theorem

Let pn
θ
denote the joint probability density of {(yi , xi )}

n
i=1 that

satisfies some regularity conditions (C1)–(C4).

Assume that the penalty function Pλn
satisfies

(i) Pλn
(wq) ≥ 0 and Pλn

(0) = 0 and
(ii) Pλn

(w∗
q ) ≥ Pλn

(wq) if |w
∗
q | ≥ |wq|.

There exists a sequence rn → ∞ so that θ̂ is rn consistent.

If bn converges to 0, then there exists a local minmizer θ̂n of lp(θ) such
that ‖θ̂n − θ‖ = Op(r

−1
n + an).
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Asymptotic Theories

Let
A = {q : w

(0)
q 6= 0} and B = {q : w

(0)
q = 0},

Theorem

(Sparsity) Let θ̂n = [ŵ′
A, ŵ

′
B, v̂0, σ̂

2
v ]

′ be the rn-consistent local optimizer
of lp(θ) in Theorem 1. Assume the same regularity conditions (C1)–(C4)
also hold as in Theorem 1. In addition, assume that

(1) lim inf
n→∞

lim inf
θ→0+

1
λn

∂Pλn (
ˆθ)

∂wq
> 0

(2) λn → 0 and nλn

rn
→ ∞ as n → ∞.

Therefore, with probability tending to 1, model sparsity can be achieved,
i.e.

lim
n→∞

P(ŵB = 0) = 1. (3)
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Penalized Gaussian process classification - PGPC

ti |xi ∼ Bin(1, πi (xi )).

We use the logistic link function f (xi ) , logit(πi (xi )) = log
(

πi

1−πi

)

.

πi = p (ti = 1|f (xi )) =
1

1+exp(−f (xi ))
.

f (·) ∼ GPR(0, k(·, ·)|x).

k(xi , xj ; ξ) = v0 exp
(

−1
2

∑Q
q=1 wq(xiq − xjq)

2
)

, where

ξ = [w1, . . . ,wQ , v0].
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Penalized Gaussian process classification - PGPC

Marginal density:

p(t|X) =

∫

p(t, f|X)df

=

∫

p(t|X, f)p(f|X)df

=

∫ N
∏

i=1

πtii (1− πi )
1−tip(f|X)df

=

∫ N
∏

i=1

(

1

1 + exp(−fi )

)ti
(

1−
1

1 + exp(−fi )

)1−ti

p(f|X)df
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Penalized Gaussian process classification - PGPC

Marginal log-likelihood

ln(ξ) = log p(t|X, ξ)

= log

∫

p(t|X, f, ξ)p(f|X, ξ)df

= log

∫

exp(Φ(f))df.

Laplace approximation
∫

exp(Φ(f))df ≈ exp

{

Φ(f̂) +
N

2
log 2π −

1

2
log
∣

∣C−1 + K
∣

∣

}

,

where K = ▽▽ log p(t|X, f, ξ)

Penalized likelihood:

lp(ξ) = −ln(ξ) +

Q
∑

q=1

Pλn
(wq).
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Penalized Gaussian process classification - Leukaemia
Cancer Data

2 types of Leukaemia Cancer, Acute Myeloid Leukaemia (AML) and
Acute Lymphoblastic Leukaemia (ALL).

7129 genes (input variables).

Training data (38): 27 cases of ALL and 11 cases of AML.

Test data (34): 20 cases of ALL and 14 cases of AML.

typical large p small n problem. (here is large Q small n.)
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Penalized Gaussian process classification - PGPC

Sample Number

G
e

n
e

s

Gene Expression Data for Training

5 10 15 20 25 30 35

1000

2000

3000

4000

5000

6000

7000
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Penalized Gaussian process classification - PGPC

Sample Number

G
e

n
e

s

Gene Expression Data for Training (30 Genes Selected)

5 10 15 20 25 30 35

50

100

150

200

250

300

350
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Penalized Gaussian process classification - PGPC

Sample Number

S
e

le
c
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d
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e
n

e
s

LASSO Selected Gene Expression Data for Test Data
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Penalized Gaussian process classification - PGPC

Sample Number

S
e

le
c
te

d
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e
n

e
s

ENET Selected Gene Expression Data for Test Data
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Penalized Gaussian process classification - PGPC

Method 5-fold GCV Error ClassError No. of Genes Selected

Golub 3/38 4/34 50
ENET Linear 3/38 0/34 45
LASSO PGPC 4/38 3/34 30
ENET PGPC 2/38 1/34 22
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Comments – Generalized GPFR model

Suppose that zm(t) has a distribution from exponential family, a
generalized GPFR model (Wang and Shi, 2012) can be defined as

E(zm(t)|τm(t)) = h(µm(t) + τm(t)),

τm(t) = τm(xm(t)) ∼ GPR(0, k(·, ·;θ)|xm(t)).
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Comments – future work

A functional linear regression model with a scalar response y ∈ R is
defined by

y = µ+

∫

S
β(s)(x(s)− µx(s))ds + ǫ,

where µx(s) = E(x(s)) and ǫ is mean-zero noise, x(s) ∈ L2(S) where
S is a subset of the real line R.

In general, a nonlinear functional model is

y = g(x1(s), . . . , xp(s), z1, . . . , zq) + ǫ = g(x(s), z) + ǫ,
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Comments – future work
A nonlinear GP function-on-function model may be defined as (in
progress)

If g(·) depends on x(s) only,

g(x(s)) ∼ fGPR[µ, kf (θ)|x(s)]

where the covariance kernel depends on two sets of functional input
covariates, e.g.

Cov[g(xi (s)), g(xj(s))] = kf [xi (s), xj(s);θ]

= v0 exp

{

−
1

2

p
∑

k=1

wk ||xik(s)− xjk(s)||
2
f

}

.

Here ||xik(s)− xjk(s)||
2
f is the norm between two functions, for

example a L2 norm ||xik(s)− xjk(s)||
2
f =

∫

S(xik(s)− xjk(s))
2ds.

If g(·) depends on both x(s) and z, we my extend the above with a
new covariance kernel by multiplication of two covariance kernels:

k[(xi (s), zi ), (xj(s), zj)] = kf [xi (s), xj(s)] · k(zi , zj).
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Comments

GPFR model performs very well on prediction and clustering for the
repeated functional data with large dimensional functional covariates;

There are still many interesting statistical problems, for example
◮ Selection of kernel covariance function and the related theory;
◮ Empirical Bayesian learning and the related theory (e.g. convergence

rate);
◮ Extensions: e.g.

⋆ Dynamic nonlinear control problems;
⋆ Nonparametric functional latent variable models;
⋆ Function-on-function regression model
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Comments – penalized technique

Penalized GPR works well.

Need to develop an efficient optimization algorithm particularly for
classification problem or other problems with categorical functional
data.

More research on group selection, particularly when the input
variables is high-dimensional and highly correlated.
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Shi, J. Q and Choi, T. (2011) Gaussian Process Regression Analysis
for Functional Data. Chapman & Hall/CRC.

http://www.staff.ncl.ac.uk/j.q.shi

Thank you ...
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